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1CFD FOR WIND-TURBINE WAKE AERODYNAMICS

adapted
from [154]1.1 introduction

Arguably, there is no better picture to start this thesis than the one shown in figure
1.1. The wakes of the wind turbines in the off-shore wind farm Horns Rev are
beautifully visualized due to condensation of water vapor in the wake.

Figure 1.1: Horns Rev wind farm in the North Sea, close to the coast of Denmark.

The grouping of turbines in farms such as Horns Rev introduces two major issues
compared to single wind turbines: reduced power production, due to wake velocity
deficits, and increased dynamic loads on the blades, due to increased turbulence levels.
Depending on the layout of and wind conditions at a wind farm the power loss
of a downstream turbine can easily reach 40% in full-wake conditions, see figure
1.2b. When averaged over different wind directions, losses of approximately 8% are
observed for onshore farms, and 12% for offshore farms (see e.g. Barthelmie et al.
[12, 13]). Figure 1.2 also reveals that for the full-wake (aligned) condition different
simulation models agree rather well with the experimental data, but for non-aligned
conditions there is a large discrepancy between experiments and models. It is there-
fore our intention to develop simulation tools that can better predict wind turbine
wakes in farms in order to improve wind turbine designs and optimize wind farm
layouts. This is of practical relevance for the Energy research Centre of the Nether-
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2 cfd for wind-turbine wake aerodynamics

lands (ECN). Our ‘tentative’ research goal - which will be elaborated in section 1.5
- can be formulated as:

Accurate and efficient numerical simulation of wind-turbine wakes in wind
farms.

To sharpen this statement (what is ‘accurate’? what is ‘efficient’?) we make an over-
view of the current approaches to wake modeling, and where they need improve-
ment. This will be done in sections 1.2-1.4. Section 1.5 then summarizes the state-
of-the-art and provides the thesis outline.

(a) Wind at 15˝ with respect to turbine row (b) Wind aligned with turbine row (‘full-
wake’)

Figure 1.2: Comparison of different models (both engineering and CFD models, open sym-
bols) and experiments (solid dots) in predicting the power output of Horns Rev
for two different wind directions. Reproduced from [13].

1.2 classification of wake models

When studying power losses and blade loading, wind-turbine wakes are typically
divided into a near and a far wake [199]. The near wake is the region from the tur-
bine to approximately one or two rotor diameters downstream, where the turbine
geometry directly affects the flow, leading to the presence of distinct tip vortices. Tip
and root vortices lead to sharp gradients in the velocity and peaks in the turbulence
intensity. For very high tip-speed ratios the tip vortices form an almost continuous
vorticity sheet: a shear layer. The turbine extracts momentum and energy from the
flow, causing a pressure jump and consequently an axial pressure gradient, an ex-
pansion of the wake and a decrease of the axial velocity. In the far wake the actual
rotor shape is only felt indirectly, by means of the reduced axial velocity and in-
creased turbulence intensity. The far wake is the region of interest when studying
wind farm aerodynamics. Turbulence is the dominating physical process in this part
of the wake. Three sources can be identified: atmospheric turbulence (from surface
roughness and thermal effects), mechanical turbulence (from the blades and the
tower) and wake turbulence (from tip vortex break-down / shear-layer instabilit-
ies). Turbulence acts as an efficient mixer, leading to the recovery of the velocity



1.2 classification of wake models 3

deficit and a decrease in the overall turbulence intensity. Far downstream the velo-
city deficit becomes approximately Gaussian, axisymmetric and self-similar. Wake
meandering, the large-scale movement of the entire wake, might further reduce the
velocity deficit, although it can considerably increase fatigue and extreme loads on a
downwind turbine. It is believed to be driven by the large-scale turbulent structures
in the atmosphere [49, 89, 90].

The distinction between near and far wake is also apparent when classifying
existing numerical models for wind-turbine wake aerodynamics, see table 1.1.

method blade model wake model

kinematic thrust coefficient self-similar solutions

BEM actuator disk quasi 1D momentum theory

+ blade element

vortex-lattice, -particle lifting line/surface vorticity sheet, particles

+ blade element

panels surface mesh vorticity sheet

generalized actuator actuator disk/line RANS/LES

direct volume mesh RANS/LES

Table 1.1: Classification of models.

The first and simplest approach is an analytical method that exploits the self-similar
nature of the far wake to obtain expressions for the velocity deficit and turbulence
intensity. The second, Blade Element Momentum (BEM) theory, uses a global mo-
mentum balance together with 2D blade elements to calculate aerodynamic blade
characteristics. The vortex-lattice and -particle methods assume inviscid, incom-
pressible flow and describe it with vorticity concentrated in sheets or particles.
Panel methods similarly describe an inviscid flow field, but the blade geometry
is taken into account more accurately and viscous effects can be included with
a boundary-layer code; the wake follows as in vortex-wake methods. These four
methods have been extensively discussed in previous reviews, such as Vermeer et
al. [199], Crespo et al. [39], Snel [170, 171] and Hansen et al. [66]. The last two meth-
ods, the generalized actuator disk method and the direct method, are relatively new
and are commonly called Computational Fluid Dynamics (CFD) methods. CFD is
the most ‘fundamental’ approach, in the sense that the equations of motion (the
Navier-Stokes equations) are solved. This approach is therefore expected to give the
most accurate results, and it is the approach that we take in this thesis. In the re-
mainder of this chapter we will discuss the state-of-the-art in CFD for wind-turbine
wake modeling: section 1.3 discusses the governing equations and turbulence mod-
els for the wake and section 1.4 discusses the various ways to model the effect of
the rotor on the wake.



4 cfd for wind-turbine wake aerodynamics

1.3 wake modeling with cfd

1.3.1 The incompressible Navier-Stokes equations

It is reasonable to assume that the flow field in wind-turbine wakes is incompress-
ible, since the velocities upstream and downstream of a turbine placed in the atmo-
sphere are typically in the range of 5-25 m/s. Only when calculating the aerody-
namics at blade tips compressibility effects may be important. Since in most calcula-
tions of wind-turbine wakes the rotor is not modeled directly (this will be discussed
in section 1.4), the incompressible Navier-Stokes equations are a suitable model to
describe the aerodynamics of wind-turbine wakes:

∇ ¨ u “ 0, (1.1)
Bu
Bt

` ∇ ¨ pu uq “ ´
1
ρ
∇p ` ν∇2u, (1.2)

supplemented with initial and boundary conditions. The density is assumed to be
constant. In the case of a non-neutral atmosphere the Boussinesq approximation
is typically employed to account for buoyancy effects, and an extra equation for
the temperature has to be solved. The effect of the rotation of the Earth, given by
the Coriolis term, is neglected in many wake studies, but can have an effect when
computations involve large wind turbines and wind farms (e.g. [132]).

Although this set of equations provides a complete model for the description
of turbulent flows, it is not easily solved. The difficulty associated with turbulent
flows is the presence of the non-linear convective term, which creates a wide range
of time and length scales [40]. For example, in the atmospheric boundary layer the
largest turbulent scales are of the order of 1 km, while the smallest scales are of the
order of 1 mm [185]. Inside the blade boundary layers the scales are even smaller.
The range of scales depends on the Reynolds number (Re), the dimensionless para-
meter that indicates the ratio of convective forces to viscous forces in the flow. Large
values of the Reynolds number, encountered in blade and wake calculations, lead to
a large range of scales, making computer simulations extremely expensive. Resolv-
ing all scales in the flow, so-called Direct Numerical Simulation (DNS), is therefore
not feasible. Turbulence models need to be constructed, modeling the effect of the
unresolved small scales based on the behavior of the large scales. However, even
with the cost reduction provided by a turbulence model, one cannot resolve both
the boundary layers on the turbine blades and the turbulent structures in the wake.
This necessitates a simplified representation of the wind turbine in case of wake
calculations (and a simplified representation of the wake in case of blade calcula-
tions).

A large number of turbulence models have been constructed in the last decennia,
see e.g. [210, 143, 58]. This section will discuss the two most important methodolo-
gies in turbulence modeling for wind-turbine wakes, namely RANS and LES.
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1.3.2 RANS

RANS (Reynolds-Averaged Navier-Stokes) methods aim for a statistical description
of the flow. Flow quantities such as velocity and pressure are split in an average
and a fluctuation, the so-called Reynolds decomposition:

upx, tq “ upxq ` u1px, tq. (1.3)

The averaging procedure, ensemble averaging, is such that upxq “ upxq and u1px, tq “

0. The Reynolds decomposition (1.3) is substituted into the Navier-Stokes equations,
which are then averaged, resulting in [40]:

Bu
Bt

` ∇ ¨ pu uq “ ´
1
ρ
∇p ` ν∇2u ´ ∇ ¨ pu1u1q. (1.4)

The term u1u1 is called the Reynolds stress tensor, which appears as a consequence
of the non-linearity of the convective term, and represents the averaged momentum
transfer due to turbulent fluctuations. The Reynolds stresses can be interpreted as
turbulent diffusive forces. In wind-turbine wakes they are much larger than the
molecular diffusive forces ν∇2u, except near solid boundaries. In order to close the
system of equations, a model is needed to express the Reynolds stresses in terms of
mean flow quantities.

A widely adopted approach of modeling the Reynolds stresses exploits the Bouss-
inesq hypothesis [19] (not to be confused with the Boussinesq approximation men-
tioned earlier). Based on an analogy with laminar flow it states that the Reynolds
stress tensor can be related to the mean velocity gradients via a turbulent ‘eddy’
viscosity νT ,

u1u1 “ ´νT

´

∇u ` p∇uqT
¯

, (1.5)

so that the RANS equations (1.4) become:

Bu
Bt

` pu ¨ ∇qu “ ´
1
ρ
∇ p̄ ` ∇ ¨

´

pν ` νTqp∇u ` p∇uqTq

¯

. (1.6)

This approach of modeling the effect of turbulence as an added viscosity is widely
used for turbulent flow simulations. It is very useful as engineering method, be-
cause the computational time is only weakly dependent on the Reynolds number.
However, the validity of the Boussinesq hypothesis is limited. In contrast to ν, νT
is not a property of the fluid, but rather a property of the type of flow in question.
Since eddies are fundamentally different from molecules, there is no sound phys-
ical basis for equation (1.5) [210] and DNS calculations have indeed not shown a
clear correlation between u1u1 and ∇u [157]. The Boussinesq hypothesis is therefore
inadequate in many situations, for example for flows with sudden changes in mean
strain rate (e.g. the shear layer of the wake), anisotropic flows (e.g. the atmosphere)
and three-dimensional flows [40, 210].
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Many different methods have been suggested to calculate νT , typically called
zero-equation (algebraic closure, like mixing length), one-equation and two-equation
models (see e.g. Wilcox [210] and references therein). The k ´ ϵ model is an example
of a two-equation model often encountered in wind-energy wake applications, the
k ´ ω model (with SST limiter) is more convenient near blade surfaces. In the k ´ ϵ
model two additional partial differential equations are introduced, one for the tur-
bulent kinetic energy k and one for the turbulent diffusion ϵ. They contain a number
of constants that have been determined by applying the model to some very general
flow situation (isotropic turbulence decay, flow over a flat plate).

Although the application of the averaging procedure to the Navier-Stokes equa-
tions, resulting in the RANS equations, leads to a significant reduction in computa-
tional effort, solving equations (1.4) is still a formidable job for wake calculations.
One of the reasons for this is the divergence-free constraint in equations (1.1)-(1.2),
which requires that the pressure is calculated implicitly via an elliptic equation,
the pressure Poisson equation. Two simplifications to this approach, parabolization
and linearization, have been suggested and are described in [154]. In this section we
continue to describe efforts in literature with the -more complete- elliptical model.

Different researchers found that the standard k ´ ϵ and k ´ ω models result in ‘dif-
fusive’ wakes: the velocity deficits are too small and the turbulence intensity does
not show the distinct peaks observed in experiments [139, 26, 27, 47, 133, 136]. The
reasons for the failure of these standard turbulence models in wind-turbine wakes
were explained by Réthoré [139], and are basically caused by the limited validity of
the Boussinesq hypothesis, mentioned before. To improve correspondence with ex-
perimental data, several adaptations of the k ´ ϵ model have been suggested. These
adaptations all strive to reduce (directly or indirectly) the eddy-viscosity, and hence
the diffusion, in the near wake.

Firstly, El Kasmi and Masson [47] added an extra term to the transport equation
for the turbulent energy dissipation (ϵ) in a region around the rotor, based on the
work of Chen and Kim [36]. This method leads to the introduction of two addi-
tional parameters: a model constant and the size of the region where the model is
applied. Compared to experimental data, significant improvements over the original
k ´ ϵ model were observed. Cabezón et al. [27] and Rados et al. [136] have also ap-
plied this approach and found acceptable agreement with other experimental data.
Réthoré [139] noticed however that increasing the dissipation proportionally to the
production of turbulence contradicts LES results.

A second approach is the realizability model. In this model the eddy viscosity is
reduced to enforce that Reynolds stresses respect so-called realizability conditions
(see e.g. [158]). According to Réthoré these conditions are not satisfied in the near
wake by the eddy-viscosity based k ´ ϵ model, due to the large strain rate at the edge
of the wake, where the Boussinesq hypothesis is inadequate [139]. Both Réthoré
[139] and Cabezón [27] used a realizable model based on the work of Shih [164].
Compared to the standard k ´ ϵ model, better results are obtained, although the
prediction of both wake deficit and wake spreading [139] and turbulence intensity
[27] remains unsatisfactory.
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More adaptations are under investigation. Prospathopoulos et al. [133] adapted
the constants of the k ´ ϵ and k ´ ω model for atmospheric flows and investigated
the effect of complex terrain. Rados et al. [136] used Freedman’s model [54] to
change the constants of the ϵ equation in case of stable atmospheric conditions.
Prospathopoulos et al. [134] obtained good results with Durbin’s correction [46],
in which the turbulent length scale is bounded. Another possibility comes from
an analogy with forest and urban canopy simulations, where obstacles are also
modeled as body forces [172, 173]. Réthoré adapted the k and ϵ equations [139]
to take into account the extraction of turbulent kinetic energy by the actuator and
found significant improvement with respect to the standard k ´ ϵ model.

A fundamentally different approach is the Reynolds stress model (RSM) [91],
also called differential second-moment closure model (DSM or SMC), which does
not rely directly on the Boussinesq hypothesis. In the RSM all the components of
the Reynolds stress tensor are modeled, which makes it suitable for anisotropic
flows. However, it leads to six additional PDEs, making the approach expensive.
Moreover, these PDEs contain terms which have to be modeled again, and often
closure relations resembling the Boussinesq hypothesis are still employed. Lastly,
the disappearance of the (stabilizing) eddy-viscosity term can lead to numerical
problems. This RSM approach was employed by Cabezón et al. [27] and gave more
accurate results than both the El Kasmi-Masson model and the realizability model.
However, in predicting the velocity deficit in the near wake the parabolic UPM-
PARK code outperformed the elliptic models [26], because in the parabolic code
the streamwise diffusive effects are totally neglected. In the far wake the velocity
deficit is predicted similarly to the elliptic models, but the turbulence intensity is
overestimated and does not show the distinct peaks.

In case of stratification the production of turbulence due to buoyancy has to be
taken into account in turbulence closure models - see [154] and references therein.

1.3.3 LES

In recent years LES (Large Eddy Simulation) is receiving more attention in the wind-
energy wake community, due to its ability to handle unsteady, anisotropic turbulent
flows dominated by large-scale structures and turbulent mixing. This is a significant
advantage over RANS methods, but the drawback is that the computational require-
ments for LES are much higher than for RANS. In LES the large eddies of the flow
are calculated while the eddies smaller than the grid are modeled with a sub-grid
scale model. This is based on the assumption that the smallest eddies in the flow
have a more or less universal character that does not depend on the flow geometry.
Mathematically this scale separation is carried out by spatially filtering the velocity
field, splitting it in a resolved (also called large-scale, simulated, or filtered) velocity
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and an unresolved (small-scale) part. In general this filtering operation is defined
as a convolution integral:

rupx, tq “

ż

upξ, tq Gpx ´ ξ, ∆q dξ, (1.7)

where Gpx ´ ξ, ∆q is the convolution kernel, depending on the filter width ∆. The
sub-grid velocity is then defined as the difference between the flow velocity and the
filtered velocity:

u1px, tq “ upx, tq ´ rupx, tq. (1.8)

This decomposition resembles that of Reynolds-averaging, but with the difference
that in general r

ru ‰ ru and ru1 ‰ 0. Applying the filtering operation to the Navier-
Stokes equations (and assuming certain properties of the filter) leads to the follow-
ing equation:

Bru
Bt

` ∇ ¨ pru ruq “ ´
1
ρ
∇rp ` ν∇2

ru ´ ∇ ¨ pĂuu ´ ruruq. (1.9)

As in the RANS equations (1.4) a new term appears, the subgrid-scale (SGS) stresses.
These stresses represent the effect of the small (unresolved) scales on the large
scales. A widely used model to calculate these stresses is the Smagorinsky model
[169], which employs the Boussinesq hypothesis again:

τSGS “ Ăuu ´ ruru “ ´νSGS

´

∇ru ` p∇ruqT
¯

. (1.10)

Possible ways to calculate the subgrid-scale eddy-viscosity νSGS are to use an ana-
logy of the mixing-length formulation or to use one- or two-equation models in-
volving kinetic energy and turbulent dissipation. Due to use of the Boussinesq hy-
pothesis similar limitations as in RANS are encountered. A large number of other
subgrid-scale models have therefore been proposed, for example dynamic models,
regularization models and variational mutli-scale models (see e.g. [143, 58]).

In contrast to RANS, where the computational cost is only weakly dependent on
Re, the computational cost of LES scales roughly with Re2. Near solid boundaries,
where boundary layers are present, LES is extremely expensive because it requires
refinement in three directions, whereas RANS only requires refinement in the dir-
ection normal to the wall. A possibility is to employ a hybrid approach: RANS to
resolve the attached boundary layers and LES outside the wall region, so-called
Detached Eddy Simulation [179, 180]. Since equations (1.5) and (1.10) both have a
similar form, this switch between RANS and LES can be made by changing the
eddy viscosity based on a wall-distance function.

As mentioned before, LES has the advantage over most RANS models that it is
better able to predict the unsteady, anisotropic turbulent atmosphere. Jimenez et al.
[81] used a dynamic sub-grid scale model with the rotor represented by a uniformly
loaded actuator disk. A good comparison with experiments was found. The same
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model was used in [82] to study the spectral coherence in the wake and in [80]
to study the wake deflection due to yaw; in both cases reasonable agreement with
experiments and an analytical model was observed.

Troldborg et al. [191, 190, 192] used a vorticity-based mixed-scale sub-grid scale
model with the actuator line technique to study the influence of shear and inflow
turbulence on wake behavior. The atmospheric boundary layer is imposed with the
force field technique of Mikkelsen [112] and atmospheric turbulence is generated
with Mann’s method. It was found that shear and ground effects cause an asym-
metric development of the wake with larger expansions upward and sideward than
downward. Inflow turbulence, when compared with laminar inflow, destabilized
the vortex system in the wake, resulting in an improved recovery of the velocity de-
ficit, but also an increased turbulence intensity. Furthermore, it was found that the
wake is also unstable and becomes turbulent for uniform, laminar inflow, especially
at low tip-speed ratios.

In the work of Ivanell [76] the same LES model was used for farm simulations.
Twenty non-uniformly loaded actuator disks, in combination with periodic bound-
ary conditions, were used to simulate the 80 turbines that comprise the Horns Rev
wind farm (figure 1.3a). The power production of downstream turbines agreed reas-
onably well with experimental data (figure 1.3b).

Meyers and Meneveau [108] performed LES with a (non-dynamic) Smagorinsky
model to study infinite arrays of wind turbines in staggered and non-staggered
arrangement, and it was observed that the staggered arrangement had a higher
power production. Porté-Agel et al. [132, 211] employ a Lagrangian scale-dependent
SGS model, a parameter-free model that performs better in ABL simulations than
the traditional Smagorinsky and standard dynamic models [182]. Similar to what
Réthoré [139] shows for the k ´ ε model, Yu and Porté-Agel [211] show that the
Smagorinsky coefficient is not constant in the wake, but increases in the center of
the wake and decreases near the ground and in the shear layer. With an actuator-
type approximation for the turbine this model provides a very good agreement
with atmospheric wind tunnel data [32]. Furthermore, the effect of a wind turbine
on a stable atmospheric boundary layer was investigated, demonstrating that the
momentum and buoyancy flux at the surface are reduced and as a result possibly
influence the local meteorology.

A comparison between RANS (standard k ´ ε) and LES (method of Bechmann
[14]) was made by Réthoré [139] in order to explain the aforementioned discrep-
ancies between the k ´ ε model and experimental data. The LES results are clearly
superior to RANS when comparing both mean velocity profiles and turbulence
quantities, but the computational time increases from hours (RANS) to days (LES)
for a single wake case. In the study of Stovall et al. [183] the standard k ´ ε model
and LES with a one-equation SGS model were compared. Again it was observed
that the LES results are closer to experimental data in a single wake calculation,
and that the wake recovery due to turbulent mixing with the outer flow is much
better captured by LES in a multiple wake situation. The difference in computa-
tional time was a factor 60, when the same grid for both RANS and LES was used.
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However, a well-resolved LES should require a much finer grid than RANS, making
it even more expensive.

An estimate of the necessary grid resolution can be obtained based on the Reyn-
olds number. For a sufficiently resolved LES one needs cell sizes far enough in the
inertial subrange, i.e., of the order of the Taylor microscale. Since the Taylor mi-
croscale scales with Re´1{2, and the Reynolds number based on the diameter of
a modern-size wind-turbine is Op108q, this leads to the requirement of cell sizes
around 1 cm3. This is somewhat conservative; for atmospheric flows (based on
an integral length scale of 1 km) the Taylor microscale was estimated at 10 cm
[212]. Most of the LES computations to date use cell sizes of approximately 1-10 m,
which might be too coarse to resolve enough scales. Computations require typic-
ally 107-108 grid points and run on supercomputers for several days or weeks, even
for single wake situations. With the continuous advance in computer power finer
meshes will be possible, but the associated increase in data analysis will leave this
approach unattractive for many engineering purposes.

(a) Isovorticity surfaces colored by pressure
values.
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(b) Comparison of power prediction from simulations
and experiments for different inflow angles.

Figure 1.3: LES of the flow through 20 actuator disks, representing the Horns Rev wind farm.
Reproduced from [76].

1.3.4 Numerical issues

Most RANS codes use second-order accurate finite volume schemes on structured
meshes, with upwind discretization of the convective terms and central discretiza-
tion of the diffusive terms, leading to stable and robust schemes. Implicit methods
are normally used to find a steady-state solution. In LES, the temporal and spa-
tial discretization of the convective terms should be done more carefully. The use
of upwind schemes for the spatial discretization can influence the energy cascade
from large to small scales due to the introduction of numerical dissipation [103].
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Several authors have indeed mentioned premature turbulence decay and related it
to possible numerical dissipation, see e.g. [14, 192, 183]. This forms the rationale for
the application of central or spectral schemes, see e.g. Bechmann [14] and Meyers et
al. [108]. Apart from the spatial discretization the temporal discretization can also
introduce numerical dissipation. In [14] this limits the time step, partly removing
the advantages of an implicit method. High-order low-dissipative explicit schemes,
such as the standard four-stage Runge-Kutta method, used in [28], can then be an
attractive alternative.

Lately, high-order (typically fourth order) schemes have also been employed for
the spatial discretization [14, 108], reducing interference between the sub-grid scale
model and the discretization. A blend with third order upwind schemes is some-
times made to ensure numerical stability [190, 14, 76]. However, it should be realized
that the formal order of accuracy of a discretization scheme is only obtained in the
limit of sufficiently high spatial resolution, something typically not encountered in
LES of wind turbine wakes. Mesh refinement studies are often computationally too
expensive, and one has to rely on the energy spectrum to check if the inertial sub-
range is captured well. Furthermore, partial cancellation of sub-grid modeling and
numerical errors may occur, leading to the counterintuitive conclusion that high-
order accurate schemes, improved sub-grid models or finer meshes may lead to
worse results [143, 58, 107].

To conclude, when performing LES simulations of wind-turbine wakes, numer-
ical methods are needed that are non-dissipative (in space and time) and stable,
even on coarse grids.

1.4 rotor modeling

To solve the RANS equations (1.4) or LES equations (1.9) in the near and far wake
of a wind turbine, a representation of the blades is necessary. Basically, two ap-
proaches exist: the generalized actuator disk approach, in which the blades are
represented by a body force (section 1.4.1), or the direct approach, in which the
presence of the blades is taken into account by discretizing the actual blades on a
computational mesh (section 1.4.2).

1.4.1 Generalized actuator modeling

The first work on actuator disks was probably by Rankine [138] and extended by
R.E. Froude [55]. The concept of a disk that changes the momentum and energy of
a fluid is often used to derive the optimum power coefficient of a wind turbine and
the corresponding Betz limit. When the actuator concept is used together with solv-
ing the Navier-Stokes equations, it is known as the generalized actuator model, and
the forcing terms appear as a source term in the momentum equations. These forces
are assumed to be known or are calculated based on the local flow field. In this way
the computational requirements associated with constructing a body-fitted mesh
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and resolving boundary layers on the body can be greatly alleviated. Examples of
applications are, besides wind turbines, propellers on aircraft and on ships [205],
helicopter rotors, and insect or bird wings [48, 119]. For a general introduction to
actuator disk theory see [71].

An actuator acts as a momentum sink which is explicitly added to the momentum
equations (1.2):

ż

Ω

Bu
Bt

dΩ `

ż

BΩ
u u ¨ n dS “ ´

ż

BΩ

1
ρ

p n dS `

ż

BΩ
ν

´

∇u ` p∇uqT
¯

¨ n dS

`

ż

AXΩ
f dA, (1.11)

which are written in weak form, because the force leads to a discontinuity in pres-
sure. Apart from this momentum sink, one should also introduce sources of tur-
bulence corresponding to the mechanical turbulence generated by the blades. Cur-
rently, three different approaches for prescribing the force term f exist: the actuator
disk, actuator line and actuator surface models, see figure 1.4.

Figure 1.4: Illustration of the actuator disk (AD), line (AL) and surface (AS) concept.

1.4.1.1 Actuator disk

In case of a uniformly loaded actuator disk, f acts on the rotor-disk surface A and
is usually expressed in terms of the thrust coefficient CT only:

ρ f “
1
2

ρV2
refCTex, (1.12)

where the axis of the disk is assumed to be parallel to the x-axis. The determination
of the reference velocity Vref in order to calculate CT is not obvious. For a turbine
facing the undisturbed flow, Vref is evidently V8, but for a turbine in the wake of
an upstream turbine or in complex terrain this is not the case. Prospathopolous et
al. [134] proposed an iterative procedure to obtain the reference velocity and the
thrust coefficient for downstream turbines modeled as actuator disks: starting with
a certain Vref, one determines the thrust coefficient, from which the axial induction a
follows, and then a new reference velocity based on the local flow field is computed:
Vref “ Vlocal{p1 ´ aq. This procedure is repeated until convergence is achieved. Calaf
et al. [108, 28] use a similar approach by taking the local velocity and axial induction
factor to determine the reference wind speed, but not in an iterative manner. The
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local velocity is obtained by disk averaging and time filtering (an LES model is
used).

For non-uniformly loaded disks, the force is depending on radial position but
constant over an annulus, see figure 1.4. Sectional lift and drag coefficients (cl and
cd) are then used to find the local forces on the blades, like in BEM:

ρ f
2D “

1
2

ρV2
relc pcleL ` cdeDq , (1.13)

where eL and eD are unit vectors in the direction of lift and drag; cl and cd are
functions of the Reynolds number and the angle of attack α. The force integral
in equation (1.11) then becomes a line integral; the disk is recovered as a time
average of line forces. The relative velocity Vrel at the radial positions is found
by interpolating the velocity field in the surrounding computational cells. This is
different from BEM, where Vrel is found from an iterative procedure that employs
a global momentum balance. Another difference with BEM is the application of a
tip-loss correction. The assumption of an infinite number of blades is corrected in
BEM by locally changing the induced velocity. In Navier-Stokes computations this is
not necessary, because the flow field will notice the presence of the disk so that the
induction changes automatically. However, the use of 2D airfoil data still requires a
correction to obtain the right flow angle and flow velocity [161]. A related problem
is the determination of the local α to find cl and cd. Shen et al. [160] developed a
technique with which α can be determined based on information slightly upstream
of the rotor.

Rajagopalan et al. [137] were one of the first to use the actuator type approach in
a CFD code, for the calculation of vertical axis turbines. Time-averaged forces are
prescribed and a finite-difference laminar flow solver is used to solve the steady
Navier-Stokes equations. Masson et al. [3, 104] follow the time-averaging approach
of Rajagopalan in a control volume finite element (CVFEM) setting. They included
a second grid around the turbine in order to evaluate the surface force integral (see
equation (1.11)) accurately and linearized the force term in an iterative procedure
to a steady-state solution. In [104], the lift and drag coefficients are obtained with
a dynamic-stall model. In this work the tower is, like the rotor, also modeled as a
porous surface. The forces on this surface are obtained from experimental data on
the drag of a cylinder and are enforced by imposing a pressure discontinuity instead
of adding the surface force in the equations. The presence of oscillations due to the
use of collocated methods is mentioned (i.e. storing pressure and velocity variables
at the same location), which is resolved by storing two different pressure values for
the points located on the disk surface.

Unsteady computations with the actuator disk approach were made by J.N. Sø-
rensen et al. by using cylindrical coordinates in a rotor-fixed reference frame [174,
175, 177]. In [175] a finite-difference method is employed to solve the unsteady Euler
equations in a vorticity-streamfunction formulation (for advantages and disadvant-
ages of such a formulation see [199]). A constant rotor loading is specified, but due
to numerical difficulties at the disk edge it is replaced by an elliptic distribution with
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equivalent total loading. In [174] viscous terms are included, but only to stabilize
the solution. The force on the non-uniformly loaded actuator disk is obtained from
tabulated airfoil data, and a non-linear filter is applied to suppress oscillations in
the vicinity of the disk. In [177] the vorticity-velocity formulation is used to study
different wake states, including windmill brake, turbulent wake, vortex ring and
hover state. This formulation has the advantage that there is no pressure-velocity
coupling, although a regularization kernel is still necessary to smoothly distribute
the loading from the disk to the surrounding mesh points:

f mesh “ f disk ˚ ηϵ. (1.14)

The regularization function ηϵ is for example a Gaussian. The choice for ϵ, indicating
the amount of smearing, is often a trade-off between stability and accuracy. With
this approach the wiggles present in [174] disappeared.

Madsen [101] investigated both uniformly and non-uniformly loaded actuator
disks and the effect of turbulent mixing to show the validity of the BEM theory. It
was found that BEM, with the application of a tip correction, gives a good correla-
tion with the CFD results. In later work, Madsen et al. [102] proposed a correction
to BEM based on the comparison with actuator disk simulations, which showed
that BEM overestimates the induction at the inboard part of the rotor and underes-
timates it at the outboard part.

Apart from the uniform or non-uniform axial loading described above one can
also introduce tangential forces on the disk surface to account for rotational effects.
Meyers and Meneveau [108] applied this in an LES context and showed that the
effect of the tangential forces on the wake and extracted power appears to be neg-
ligible in case of moderate power coefficient and high tip-speed ratio. However,
Porté-Agel et al. [132, 211] showed that the inclusion of rotation and non-uniform
loading leads to significant improvement in the prediction of the mean velocity and
turbulence intensity with respect to the uniformly loaded disk. This is especially ap-
parent in the center of the near wake, where the uniformly loaded disk leads to an
underestimation of the wake deficit and turbulence intensity. Further downstream
the effect of rotation and non-uniform loading disappears.

Another approach to describe an actuator disk is the actuator shape model by
Réthoré [139]. The common cells of two different grids, one for the computational
domain and one for the actuator (one dimension lower), are determined and based
on the intersecting polygons forcing is applied to a cell. A comparison between
this actuator model and a full-rotor computation shows that modeling the wake
by using forces is a good approximation for the mean flow quantities at distances
larger than a rotor diameter from the wind turbine. It is observed that 10 cells per
rotor diameter are sufficient; a similar number is typically found in other studies
as well. However, the forces fail to represent the mechanical turbulence generated
at the blade location. This turbulence can therefore be added at the disk location,
independently of the actuator force, but its effect on the far wake in comparison
with atmospheric and wake turbulence is small.
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As was mentioned, in actuator disk simulations the boundary layers are not expli-
citly simulated, but their effect is taken into account via the lift and drag coefficient.
Correctly simulating the blade Reynolds number is then less important, reducing
the required computer resources considerably. It was shown in [177] that the velo-
city field does not change noticeably when the Reynolds number is larger than 1000

(see also [171, 77, 176]). This corresponds roughly to results obtained by research
on the nature of the interface of turbulent wakes and the outer flow, which changes
around Re „ 104 [40]. Whale et al. [209] also found that the behavior of the wake is
possibly rather insensitive to the blade Reynolds number.

1.4.1.2 Actuator line

As an extension of the non-uniformly loaded actuator disk approach, J.N. Søren-
sen and Shen [176] introduced the actuator line approach, see figure 1.4. The line
forces are not averaged over the disk, but depend on time. Whereas in the actuator
disk model vorticity is shed into the wake as a continuous sheet, in the actuator
line model distinct tip vortices can be calculated. As for the non-uniformly loaded
actuator disk, the actuator line method requires knowledge of the lift and drag on
the blades. Corrections for Coriolis, centrifugal and tip effects are necessary when
2D airfoil data is used.

In order to transfer the rotating line forces to the stationary mesh a regulariza-
tion kernel similar to equation (1.14) is used. Mikkelsen investigated the actuator
line method in detail [111] and implemented it in EllipSys3D, a finite volume code
for the solution of the incompressible Navier-Stokes equations in pressure-velocity
formulation in general curvilinear coordinates [109, 110, 178]. Howard and Pereira
[73] used point forces to represent the blades, but did not take into account the dis-
tance between the force location and cell centers, leading to high-frequency noise
in the power output. They modeled the tower as a square cylinder and found that
it generates a wake that partially destroys the blade tip vortices. They recommend
for future work to model the tower by point forces as well.

1.4.1.3 Actuator surface

Shen et al. extended the actuator line method to an actuator surface method [162, 163]
and applied it to vertical axis wind turbines. Whereas in the actuator line model the
blade is represented by a line, in the actuator surface model it is represented by a
planar surface, see figure 1.4. This requires more accurate airfoil data; instead of
cl and cd, knowledge of the pressure and skin friction distribution on the airfoil
surface is needed:

f AS
2Dpξq “ f

2DFdistpξq, (1.15)

where ξ is directed along the chord, and Fdistpξq is determined by fitting empir-
ical functions to chordwise pressure distributions. These are obtained in [163] with
Xfoil, a highly accurate tool to compute pressure- and skin-friction profiles on air-
foils. A comparison with 2D RANS calculations on a body-fitted mesh around an
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airfoil shows that the pressure field can be accurately computed approximately
one chord away from the airfoil [163]. Furthermore it is shown that the use of
a dynamic-stall model in vertical-axis wind turbine calculations significantly im-
proves the agreement with experiments. In [162] the method is applied to 3D tur-
bine calculations and compared with the actuator line technique. Some improve-
ments are seen in the representation of tip vortices and the flow behavior near the
airfoil surface. In the actuator surface approach of Dobrev et al. [43] the pressure
distribution is represented by a piecewise linear function which is directly calcu-
lated from lift and drag coefficients. Like in [162] the flow field is found to be more
realistic compared to the actuator line approach, but the method is not yet able to
model the wake of an airfoil since the shear forces on the blade are not accounted
for.

Sibuet Watters and Masson use a completely different approach with their actu-
ator surface concept [95, 166, 167]. Inviscid aerodynamic theory is used to relate
vorticity distributions to both pressure and velocity discontinuities across a porous
surface. This bears resemblance with vortex methods and lifting-line theory, which
describe an inviscid flow field by concentrated vortex sheets or lines. Given the lift
coefficient, the circulation is computed, and subsequently the velocity discontinuity
over the surface is obtained by assuming a parabolic or cubic distribution. Viscous
drag is not taken into account, but in three dimensions the actuator surface can
still extract energy from the flow due to induced drag. In two dimensions, an actu-
ator surface cannot extract energy, and a rotor disk is then modeled by prescribing
the vorticity distribution of the slipstream surface, instead of the momentum loss
through the disk area. The use of surface forces instead of volume forces was found
to be the reason that the solution did not exhibit spurious oscillations.

1.4.2 Direct modeling

The complete or direct modeling of the rotor by constructing a body-fitted grid is
physically the most sound method to compute the flow around a turbine. Compared
to the generalized actuator disk approach, the blade is represented ‘exactly’, instead
of a disk/line/surface approximation. However, this approach is computationally
very expensive. Firstly, the generation of a high-quality moving mesh is not trivial.
Mesh generation is therefore commonly done with so-called ‘overset’ or ‘chimera’
grids: different overlapping grids, often structured, that communicate with each
other. An example of such a grid is shown in figure 1.5. Secondly, simulating the
boundary layer on the blades, including possible transition, separation and stall, is
difficult. Additionally, compressibility effects at blade tips can require the solution
of the compressible Navier-Stokes equations, whereas the wake remains essentially
incompressible.

Simulations with the direct model are therefore limited to single (near-) wake
computations - for examples see [154]. The main contribution to wind-turbine wake
studies is to improve the actuator models described in section 1.4.1. Examples are
the work of Johansen and N.N. Sørensen [83] and Bechmann and N.N. Sørensen
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Figure 1.5: Lay-out of overset grids around tower, blade, and far-field. Reproduced from
Zahle et al. [214].

[15], who extract 3D airfoil characteristics (i.e. sectional cl and cd when 3D flow
effects are present) from their ‘full’ 3D solution. These characteristics can be used
in actuator line modeling. An ongoing issue is the determination of the local angle
of attack (see e.g. Hansen et al. [67] and Shen et al. [160]).

1.5 research goal and thesis outline

The previous sections showed that the state-of-the-art in the numerical simulation
of wind-turbine wakes is Large Eddy Simulation with the generalized actuator ap-
proach. LES methods agree better with experimental data than RANS methods.
However, even with the generalized actuator approach, the computational require-
ments for LES are huge, and most simulations are performed on coarse grids. The
main use of LES is not (yet) to design wind farms, but to gain insight in the flow
physics and to improve simpler (‘engineering’) methods.

As stated in section 1.1, the goal of this thesis is to develop accurate and effi-
cient numerical methods for the simulation of wind-turbine wakes in wind farms.
Sections 1.3 and 1.4 highlighted that we need numerical methods that are

• stable and accurate on coarse meshes and for large time steps,

• stable independent of physical (laminar) or modeled (turbulent) viscosity,

• stable and accurate when body forces and discontinuities are introduced,

• introducing as little artificial diffusion as possible.
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Numerical methods that possess such properties are applicable to a much broader
field of research than wind-turbine wake aerodynamics alone. In a general context,
our research goal can therefore be stated as

Development of stable, low-dissipative, numerical methods for the simulation of
turbulent flows.

To achieve this goal, we will focus on so-called energy-conserving discretization
methods. Energy-conserving discretizations have the stability properties mentioned
above, and do not introduce artificial diffusion. We have developed a new Navier-
Stokes solver that has this property: ECNS - Energy-Conserving Navier-Stokes solver.
This solver is particularly suited for wind-turbine wake simulations, but also applic-
able to other flow problems. The four main ingredients for such a solver are:

1. a spatial discretization,

2. a temporal discretization,

3. an actuator model,

4. a turbulence model.

This thesis discusses the first three items. In part I the spatial discretization of the
incompressible Navier-Stokes equations on staggered cartesian grids is explained.
Staggering of the variables is a key component in this work, which allows us to
obtain an energy-conserving spatial discretization scheme, and a strong pressure-
velocity coupling necessary for correctly treating actuator forces. In part II a tem-
poral discretization is proposed which keeps the energy conservation property
when marching in time. The resulting (spatial and temporal) discretization is free of
numerical viscosity and stable for any mesh and time step. In line with these prop-
erties part III proposes a new class of actuator methods that results in a sharper
(less diffusive) representation of body forces than conventional actuator methods.



Part I

SPATIAL DISCRETIZATION

This part describes a second and fourth order energy-conserving spatial
discretization on staggered cartesian grids. The boundary contributions
to the discrete energy equation are analyzed, and new boundary condi-
tions for the fourth order scheme are proposed. It is shown that energy
conservation and high order of accuracy are conflicting requirements
near boundaries.





2ENERGY CONSERVATION

The key to making progress in the mathematical understanding of the Navier-
Stokes equations is the energy equality. [93]

2.1 introduction

Parts I and II of this thesis address the spatial and temporal discretization of the
incompressible Navier-Stokes equations. In case of inviscid flow with periodic or
no-slip boundary conditions these continuous equations possess a number of prop-
erties, also called symmetries or invariants, see e.g. [52]. Such inviscid flows are of
interest because many flows of practical importance, like the flow in wind-turbine
wakes, are convection-dominated. We focus on one important invariant of inviscid
incompressible flows, namely the kinetic energy. Upon discretizing the continuous
equations in space and/or time this invariant is often not conserved.

Energy-conserving discretization methods are methods which, like the continu-
ous incompressible Navier-Stokes equations, conserve energy in the absence of
boundary conditions and forcing terms and in the limit of vanishing viscosity. The
following equation:

dK
dt

“ ´ν}∇u}2, (2.1)

is satisfied in a discrete sense: the total energy of the flow can only decrease due to
viscous effects. This equation can be derived from the incompressible Navier-Stokes
equations, equations (1.1)-(1.2); this will be done in section 2.2. The energy equation
is, unlike for compressible flows, not a separate equation that can be solved, but is
a consequence of conservation of mass and momentum.

There are several reasons for a discretization to mimic equation (2.1).
Firstly, from a physical point of view, an energy-conserving scheme is free of

numerical diffusion. This is important for turbulent flow simulations with DNS or
LES, because it prevents numerical diffusion from overwhelming the molecular dif-
fusion (in case of DNS) or the effect of the sub-grid model (in case of LES), so that
the energy spectrum is not affected. Energy-conserving discretizations guarantee
that all diffusion is modeled (laminar and/or turbulent), and not artificial. This is
why energy-conserving schemes are seen as a necessity for DNS and LES by differ-
ent researchers, see e.g. [103, 126, 114, 121, 64, 203, 202]. Energy-conserving methods
necessitate the use of central schemes for the convective terms. Upwind schemes,
typically used in RANS simulations of turbulent flows, are robust because they in-
troduce numerical diffusion, but should for this reason not be used in LES or DNS.
Even high-order upwind methods can damp turbulence fluctuations and mask the
effects of the sub-grid scale models used in LES [84, 143, 189]. Although central

21
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schemes do not have numerical diffusion, they introduce dispersive errors; these
were found to be less detrimental than diffusive errors, at least in the simulation of
turbulent channel flow [50].

Secondly, from a more mathematical point of view, discrete energy conservation
provides a non-linear stability bound to the solution (see e.g. [142]). Flow simu-
lations are then stable for any mesh and any time step, so that these parameters
can be chosen purely based on accuracy requirements. This is especially import-
ant for simulating turbulent flows that involve large time and/or length scales, like
weather prediction [4].

Thirdly, energy-conserving methods are important when dealing with coarse grids
and large time steps. Simulations of turbulence with DNS and LES are computation-
ally very expensive and mesh sizes are kept as large as possible in practice, even
under-resolved. On coarse grids it is not obvious whether the order of a method
(defined for vanishing mesh sizes and time steps), is still a good measure of ac-
curacy and whether a formally higher order method is preferred over a formally
lower order method [51, 58]. Energy-conserving methods are of particular interest
then, because they lead to well-posed discrete operators and as a consequence to
well-behaved global errors.

2.2 continuous energy equation

In this section we will derive equation (2.1). In doing so, we derive a number of
important properties that will be mimicked in a discrete sense in section 4.1.

For convenience we repeat the incompressible Navier-Stokes equations, written
as

∇ ¨ u “ 0, (2.2)
Bu
Bt

` ∇ ¨ pu uq “ ´∇p ` ν∇2u, (2.3)

in a domain Ω with boundary Γ “ BΩ, and supplemented with either no-slip
boundary conditions

u “ ub on Γ (2.4)

or periodic boundary conditions, and a divergence-free initial condition

u “ u0. (2.5)

The (constant) density is absorbed in the pressure. See for example Gresho and Sani
[59] for well-posedness of these equations. In integral form these equations read:

ż

BΩ
u ¨ n dΓ “ 0, (2.6)

ż

Ω

Bu
Bt

dΩ `

ż

BΩ
u u ¨ n dΓ “ ´

ż

BΩ
p n dΓ `

ż

BΩ
ν∇u ¨ n dΓ, (2.7)
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expressing conservation of mass and momentum in the domain Ω. In case of peri-
odic boundary conditions, all boundary integrals disappear and one obtains the
global momentum balance

d
dt

ż

Ω
u dΩ “ 0. (2.8)

In case the normal velocity vanishes at the boundary (no penetration, u ¨ n “ 0),
only the contribution of the convective terms disappears.

In incompressible flows the (kinetic) energy is a secondary conserved quantity,
which follows from conservation of mass and momentum. The energy equation in
integral form is derived by taking the inner product of the momentum equation
with a function vpx, tq and integrating it over a domain Ω, where v satisfies the
same boundary conditions as u. The resulting scalar equation reads:

ż

Ω

Bu
Bt

¨ v dΩ
loooooomoooooon

I

`

ż

Ω
∇ ¨ pc uq ¨ v dΩ

loooooooooomoooooooooon

I I

“ ´

ż

Ω
∇p ¨ v dΩ

looooooomooooooon

I I I

` ν

ż

Ω
∇2u ¨ v dΩ

loooooooomoooooooon

IV

. (2.9)

Here upx, tq and vpx, tq are elements of L2pΩq, the space of square integrable func-
tions on Ω, with the following inner product:

pu, vq ”

ż

Ω
u ¨ v dΩ, (2.10)

implying the norm }u}2 “
ş

Ω |u|2dΩ. It should be stressed here that we have in-
troduced an explicit distinction between the convecting quantity c and the convected
quantity u, see equation (2.9).

The separate terms in equation (2.9) will be rewritten with the divergence the-
orem to reveal a number of important properties. The second, convective, term is
first written by employing the product rule as:

∇ ¨ pc uq ¨ v “ pu ¨ vq∇ ¨ c ` rpc ¨ ∇qus ¨ v. (2.11)

Consequently we have

rpc ¨ ∇qus ¨ v “ ∇ ¨ ppu ¨ vqcq ´ pu ¨ vq∇ ¨ c ´ rpc ¨ ∇qvs ¨ u. (2.12)

When using ∇ ¨ c “ 0, integrating over the domain, and applying integration by
parts (divergence theorem) we obtain

I I :
ż

Ω
rpc ¨ ∇qus ¨ v dΩ “

ż

BΩ
rpu ¨ vqcs ¨ n dΓ ´

ż

Ω
rpc ¨ ∇qvs ¨ u dΩ. (2.13)
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In case of periodic or no-penetration boundary conditions the boundary integral on
the right-hand side vanishes, and the resulting equation can be written in terms of
the inner product (2.10) as

ppc ¨ ∇qu, vq “ ´pu, pc ¨ ∇qvq. (2.14)

This relation expresses the skew-symmetry of the convective operator; it holds if
∇ ¨ c “ 0 and boundary conditions are periodic or of no-penetration type. Denoting
the convective operator by pc ¨ ∇qu “ Cpcqu it can alternatively be written as

Cpcq “ ´Cpcq˚, (2.15)

where ˚ denotes the Hermitian conjugate. Taking v “ u, we see that the convective
term does not change the total energy of the flow:

pCpcqu, uq “ 0. (2.16)

The third term, which expresses the work done by pressure forces, is written as

I I I :
ż

Ω
∇p ¨ v dΩ “

ż

BΩ
p v ¨ n dΓ ´

ż

Ω
p∇ ¨ v dΩ. (2.17)

Again, in case of no penetration, periodic, or zero pressure boundary conditions
this relation can be written as

p∇p, vq “ ´pp,∇ ¨ vq “ 0. (2.18)

This equation expresses the compatibility relation between the divergence and gradi-
ent operator.

The last term, the viscous dissipation, is rewritten with ∇2u ¨ v “ ∇ ¨ pv ¨ p∇uqTq ´

∇v : ∇u 1, leading to:

IV : ν

ż

Ω
∇2u ¨ v dΩ “ ν

ż

BΩ
v ¨

Bu
Bn

dΓ ´ ν

ż

Ω
∇v : ∇u dΩ. (2.19)

Ignoring boundary terms and performing integration by parts once again one ob-
tains the symmetry of the diffusive operator Dpuq “ ∇2u:

D “ D˚. (2.20)

To arrive at the equation for the evolution of the total kinetic energy we assume
no-penetration or periodic boundary conditions and take c “ u, v “ u. The con-

1 the Frobenius product : is defined as A : B ”
ř

i
ř

j AijBij = trpAT Bq
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vective and pressure terms vanish, so the evolution equation for the kinetic energy
k “ 1

2 }u}2 becomes:

d
dt

ż

Ω
k dΩ “ ν

ż

BΩ
u ¨

Bu
Bn

dΓ ´ ν

ż

Ω
∇u : ∇u dΩ. (2.21)

In case of periodic boundary conditions the first term vanishes, so

dK
dt

“ ´νp∇u,∇uq, (2.22)

where K :“
ş

k dΩ “ 1
2 pu, uq and the term on the right-hand side should be seen as

a Frobenius product. Since ∇u : ∇u ě 0, this equation shows that the total energy
of the flow decreases:

Kptq ď Kpt0q, t ě t0. (2.23)

This is due to viscous dissipation only; the convective and pressure terms do not
change the total energy. If equation (2.22) is satisfied in a discrete sense, then the
solution is bounded, independent of grid layout or time step.

A sharper estimate than (2.23) can be obtained by bounding the dissipative terms
using the Poincaré equality [168]

}u} ď p∇u,∇uq{
?

C, (2.24)

where C ą 0 is the lowest eigenvalue of the diffusive operator. This yields the
estimate

Kptq ď Kpt0qe´2νCt. (2.25)

When taking body forces, f , into account in the momentum equations, an addi-
tional term in the kinetic energy equation appears,

dK
dt

“ ´νp∇u,∇uq ` p f , uq, (2.26)

and the estimate (2.25) becomes [168]:

Kptq ď Kpt0qe´νCt ` p1 ´ e´νCtq
} f }2

2ν2C2 . (2.27)





3DISCRETIZATION ON A STAGGERED GRID

... this is the oldest and most straightforward approach to discretizing the Navier-
Stokes equations... on orthogonal grids it remains the method of choice [207]

3.1 introduction

The first energy-conserving scheme for the incompressible Navier-Stokes equations
is probably Harlow and Welch’s staggered grid method [68]. The staggering of the
variables leads to a method that conserves mass, momentum, energy and vorti-
city, and strongly couples pressure and velocity, making it the method of choice
for simulating incompressible flows on cartesian grids [207]. Ham et al. [65] ex-
tended the method to retain these properties on non-uniform grids. In order to
simulate flows around complex geometries, Wesseling et al. [208, 207] extended
the method to general structured grids that can be described by a cartesian grid
in computational space. On unstructured meshes staggered methods have been in-
vestigated by Perot and co-workers [126, 215]. Mahesh et al. [103] also consider
energy-conserving methods for unstructured meshes and formulate a second order
staggered method for tetrahedral elements, but propose a non-staggered formula-
tion for elements of more general shape. This results in a formulation that is not
fully energy-conserving, because the pressure gradient contributes to the kinetic
energy.

In fact, the contribution of the pressure gradient to the kinetic energy is intrinsic
to non-staggered (‘collocated’) layouts [116, 50]. Felten and Lund [50] show that this
energy error makes staggered schemes superior to collocated schemes in case of in-
viscid simulations and in case of viscous simulations with relatively coarse meshes.
However, operators in a collocated arrangement can be ‘shifted’ to obtain operators
for staggered meshes, as shown by Hicken et al. [69]. This elegant approach can
be seen as a generalization of the work of Perot to general meshes [126], includ-
ing locally refined ones. Numerical experiments show that on anisotropic cartesian
grids, where the local truncation error of the gradient is inconsistent (zeroth order),
it is still possible to have a first order accurate solution, emphasizing the positive
influence of energy-conserving methods on global discretization errors.

High-order (higher than two) energy-conserving methods hold the promise to
be more efficient than low-order methods. High-order energy-conserving finite dif-
ference methods were addressed by Morinishi et al. [116] and Vasilyev [196], who
indicate how to obtain any (even) order of accuracy on uniform grids based on
Richardson extrapolation. On non-uniform grids strict conservation and (local) or-
der of accuracy cannot be obtained simultaneously. Verstappen and Veldman [202,
203] employ a finite volume method and construct a fourth order accurate method

27
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on non-uniform grids that retains all properties of the Harlow and Welch scheme.
They call their method ‘symmetry-preserving’, because it is based on mimicking
symmetry properties of continuous operators (see equations (2.14) and (2.20)) in
a discrete sense, instead of on minimizing the local truncation error. Preserving
these symmetries leads to energy conservation. Again, it is found that the global
order of accuracy cannot be derived from the local truncation error alone; the
discretized operator is at least of equal importance, and it is indeed the energy-
conserving schemes that lead to a discretized operator that is well-posed, even on
coarse meshes. The fourth order scheme appears to be highly efficient: accurate
results have been obtained on coarse meshes for turbulent channel flows [203].

Another way to obtain higher order methods is to use compact (implicit) schemes,
either in finite difference or finite volume context (see e.g. [87] and [70] for refer-
ences). Implementation of boundary conditions is easier due to their smaller com-
putational stencil, and furthermore they have better resolution of high wave num-
bers than explicit schemes. Knikker [87] obtains energy conservation with a fourth
order compact finite difference scheme with the nonlinear terms in skew-symmetric
form, Hokpunna and Manhart [70] mention that energy conservation for compact
finite volume methods is still an open issue.

Lastly, this section would be incomplete without mentioning the recent review
article of Perot [128] and the work on ‘mimetic’ methods, like the support-operator
method by Shashkov [159], Steinberg, Bochev, Hyman [75], the work on summation-
by-parts operators initiated by Kreiss and Scherer [88] and the dual-mesh methods
of Nicolaides [122], Subramanian and Perot [186] and Mullen et al. [120].

In this chapter we describe the second order method of Harlow and Welch (HW)
[68] and the fourth order method of Verstappen and Veldman (VV) [203]; these
methods form the backbone of the ECNS code. We have chosen finite volume meth-
ods because of their conservation properties and their ability to handle discontinu-
ities (to be discussed in chapter 8).

3.2 interior discretization

3.2.1 General formulation

We spatially discretize equations (2.6)-(2.7) on a staggered cartesian grid. On a
staggered grid the pressure and the velocity components are defined at different
locations; see figure 3.1a. A staggered grid yields a natural coupling between the
divergence and gradient operator, which ensures that the pressure gradient does not
contribute to the energy equation, as we will show later. The resulting semi-discrete
system of equations reads:

Muptq “ r1ptq, (3.1)

Ω 9uptq “ ´Cpcptq, uptqq ` νDuptq ´ Gpptq ` r2puptq, tq, (3.2)
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supplemented with suitable initial conditions. We take normal instead of bold font
to distinguish between the continuous and discrete quantities. cptq, uptq P RNu and
pptq P RNp are vectors with the unknown point values of velocity and pressure in the
center of the finite volumes (not volume averages), which depend on time only. In
the remainder, their explicit t-dependence will mostly be left out of the notation. M,
C, D and G represent the discrete divergence, convection, diffusion and gradient op-
erators, respectively. Note that r2 P RNu ; r1 P RNp ; M P RNuˆNp ; Ω, C, D P RNuˆNu ,
G P RNpˆNu . r1ptq is a vector with boundary conditions for the continuity equa-
tion and r2pu, tq is a vector with boundary conditions and forcing terms for the
momentum equation. The diagonal matrix Ω “ diagpΩu, Ωvq contains the finite
volume sizes of the u- and v-volumes (which are assumed to be independent of t).
In finite element methods this is the mass matrix.

ui,j

vi,j

pi,j Ωu
1

×

(a) fine

ui,j

vi,j

pi,j

Ωu
3

×

(b) coarse

Figure 3.1: Fine and coarse finite volumes centered around ui,j.

3.2.2 Second order

The discretization of HW is constructed on a finite volume Ω1 “ ∆x∆y (see figure
3.1a for the u-component). The discrete operators on this grid are given by M “ M1,
Ω “ Ω1, etc. The divergence operator is given by

pMuqi,j “ pM1uqi,j “ ui,j ´ ui´1,j ` vi,j ´ vi,j´1, (3.3)

where the face-integrated quantities such as ui,j are related to the point values ui,j
via the midpoint rule:

ui,j “ ∆y ui,j. (3.4)

In three dimensions an additional ∆z appears in these expressions. The bar p.q in-
dicates integration in x- or y-direction; this should be clear from the context. The
convective discretization for the u-component is given by

pCupu, vquqi,j “ pCu
1 pu, vquqi,j
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“ ui`1{2,jui`1{2,j ´ ui´1{2,jui´1{2,j`

vi`1{2,jui,j`1{2 ´ vi`1{2,j´1ui,j´1{2. (3.5)

The convected (u, v) and convecting (u, v) velocities are obtained by second order,
grid-independent, interpolation of the form

ui`1{2,j “
1
2

pui,j ` ui`1,jq. (3.6)

The pressure gradient discretization is given by

pGu pqi,j “ pGu
1 pqi,j “ pi`1,j ´ pi,j. (3.7)

The diffusive terms are discretized as

pDuuqi,j “ pDu
1 uqi,j “

ˆ

Bu
Bx

˙

i`1{2,j
´

ˆ

Bu
Bx

˙

i´1{2,j
`

ˆ

Bu
By

˙

i,j`1{2
´

ˆ

Bu
By

˙

i,j´1{2
,

(3.8)
where

ˆ

Bu
Bx

˙

i`1{2,j
“

ui`1,j ´ ui,j

∆x
. (3.9)

The diffusive discretization is the product of two first order operators and can be
written in short as

Du
1 “ ∆u

1 Λu
1 p∆u

1 qT , (3.10)

where ∆u
1 is a differencing matrix consisting of ´1, 0 and 1, and Λu

1 a diagonal
matrix containing metric information (∆y{∆x).

3.2.3 Fourth order

The discretization of VV is constructed by combining the discretization on Ω1 with
the discretization on a coarser finite volume Ω3. The discrete operators on Ω3 are
indicated by M3, C3, etc. The coarse volumes are three times as large as the fine
volumes (in each direction), see figure 3.1b. Ω1 and Ω3 are combined such that the
leading order error term of the local truncation error cancels (Richardson extrapol-
ation), resulting in a fourth order approximation. The fourth order approximation
to the u-component of the divergence equation reads

pMuqi,j “ α1pM1uqi,j ´ pM3uqi,j “ α1pui,j ´ ui´1,jq ´ pui`1,j ´ ui´2,jq, (3.11)

where the face-integrated quantity ui,j is given by

ui,j “ α2∆y ui,j. (3.12)
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The coefficients α1 “ 32`d and α2 “ 3d´1, with d the number of dimensions, are
such that the leading order error term cancels. The effective finite volume size is
given by Ωu “ α1Ωu

1 ´ Ωu
3 . In case of a uniform grid, Ωu

3 “ 3dΩu
1 , so

Ωu “ 3dp32 ´ 1qΩu
1 . (3.13)

Upon division of the semi-discrete equations by this effective finite volume size
one obtains the equations in ‘finite-difference form’. For example, the divergence
operator becomes

1
3dp32 ´ 1q∆x∆y

`

α1∆ypui,j ´ ui´1,jq ´ α2∆ypui`1,j ´ ui´2,jq
˘

“

9
8

ui,j ´ ui´1,j

∆x
´

1
8

ui`1,j ´ ui´2,j

3∆x
. (3.14)

The coefficients 9
8 and ´ 1

8 are the coefficients that appear in the finite difference
method of Morinishi et al. [116] - the methods of Morinishi et al. [116] and VV [203]
are equivalent on uniform grids, and the analysis presented in the next sections is
therefore equally valid for the finite difference method.

The convective discretization for the u-component reads

Cupu, vqu “ α1Cu
1 pu, vqu ´ Cu

3 pu, vqu, (3.15)

where

pCu
3 pu, vquqi,j “ ui`3{2,jui`3{2,j ´ ui´3{2,jui´3{2,j`

vi`1{2,j`1ui,j`3{2 ´ vi`1{2,j´2ui,j´3{2. (3.16)

Like the divergence operator, the convective operator is a combination of two second
order operators, with the exception that all convecting velocities (u, v, u and v) are
obtained by fourth order, grid-independent interpolation, e.g.:

ui`3{2,j “
1
2

pβ1ui,j ` β2ui`1,j ` β2ui`2,j ` β1ui`3,jq, (3.17)

with β1 “ ´ 1
8 and β2 “ 9

8 . The convected velocities are obtained as

ui`3{2,j “
1
2

pui,j ` ui`3,jq. (3.18)

The pressure gradient terms are, like the divergence operator, a linear combination
of two second order operators:

Gu p “ α1Gu
1 p ´ Gu

3 p, (3.19)
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with
pGu

3 pqi,j “ pi`3,j ´ pi,j. (3.20)

The diffusive operator is obtained as the product of two fourth order operators,
which ensures that the resulting operator is symmetric and positive definite. We
focus on the fluxes in x-direction:

pDuuqi,j “ α1

˜

ˆ

Bu
Bx

˙

i`1{2,j
´

ˆ

Bu
Bx

˙

i´1{2,j

¸

´

¨

˝

˜

Bu
Bx

¸

i`3{2,j

´

˜

Bu
Bx

¸

i´3{2,j

˛

‚.

(3.21)
As was the case for the convective operator, the fluxes on both the small and large
volume are approximated to fourth order:

ˆ

Bu
Bx

˙

i`1{2,j
“

1
72∆x

`

α1
`

ui`1,j ´ ui,j
˘

´
`

ui`2,j ´ ui´1,j
˘˘

, (3.22)

and similarly for p Bu
Bx qi`3{2,j. In short, the diffusive discretization reads

Du “ pα1∆u
1 ´ ∆u

3 qpα1Λu
1 ´ Λu

3 qpα1∆u
1 ´ ∆u

3 qT . (3.23)

3.2.4 Extension to higher order

For higher order (e.g. sixth order) the same approach should be followed [116]: an
nth order combination of second order convective discretizations (like (3.15)), where
each convective discretization contains an nth order convecting velocity (like (3.17)).

3.3 numerical experiments

In this section we verify the convergence properties of the second- and fourth-
order method by studying the classical Taylor-Green vortex problem and the roll-up
of a shear-layer. For the performance on other test cases, such as the flow over a
backward-facing step, we refer to [145].

3.3.1 Taylor-Green vortex

The Taylor-Green vortex in two dimensions is an exact solution to the Navier-Stokes
equations:

upx, y, tq “ ´ sinpπxq cospπyq e´2π2t{Re, (3.24)

vpx, y, tq “ cospπxq sinpπyq e´2π2t{Re, (3.25)

ppx, y, tq “
1
4

pcosp2πxq ` cosp2πyqqe´4π2t{Re. (3.26)
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The domain on which we define the solution is the square r 1
4 , 2 1

4 s ˆ r 1
4 , 2 1

4 s with
periodic boundary conditions. We set Re “ 100 and we integrate from t “ 0 to
t “ 1. We use an explicit fourth-order, four-stage Runge-Kutta method for this
(see chapter 6), which ensures that the temporal errors are negligible compared to
the spatial errors. We use different uniform grids ranging from 5 ˆ 5 to 320 ˆ 320
volumes using a fixed time step of ∆t “ 10´3, and calculate the error in the resulting
velocity and pressure fields by comparing with the exact solution at t “ 1.

Figure 3.2 shows that the error in both the velocity an the pressure is second
order for the discretization of HW and fourth order for the discretization of VV, in
the L8-norm.
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Figure 3.2: Convergence of spatial error for Taylor-Green problem.

3.3.2 Shear layer roll-up

As a next test case we consider the roll-up of a shear layer. At the ‘edge’ of a wind-
turbine wake such a shear layer is present due to the velocity difference between the
flow inside and the flow outside the wake, see figure 3.3. In this section we simulate
such a problem in an idealized setting.

Inspired by [21, 87, 70] we take a domain of r0, 2πs ˆ r0, 2πs with periodic bound-
ary conditions. The initial condition is

u “

$

’

&

’

%

tanh
´

y´π{2
δ

¯

, y ď π,

tanh
´

3π{2´y
δ

¯

, y ą π,
v “ ε sinpxq, (3.27)

with δ “ π{15, ε “ 0.05 taken from [87]. The perturbation of the v-velocity makes
sure that the shear layer starts to roll-up, independent of viscosity. An impression
of the flow field at t “ 8, for both the second and the fourth order method, is given
in figure 3.4. The flow field is slightly under-resolved (the mesh Péclet condition is
not satisfied), which manifests itself by noise (‘wiggles’) in the solution. Remarkable
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the two blades at different pitch angles, the two tip
vortex spirals appear to have each their own path and
transport velocity. After a few revolutions, one tip
vortex catches up with the other and the two spirals

become entwined into one. Unluckily, there are no
recordings of this phenomena.
During the full scale experiment of NREL at the

NASA-Ames wind tunnel, also flow visualisation were
performed with smoke emanated from the tip (see
Fig. 7). With this kind of smoke trails, it is not clear
whether the smoke trail reveals the path of the tip vortex
or some streamline in the tip region. Also, these
experiments have been performed at very low thrust
values, so there is hardly any wake expansion.
A different set-up to visually reveal some properties of

the wake was utilised by Shimizu [12] with a tufts screen
(see Fig. 8).
Visualisation of the flow pattern over the blade is

mostly done with tufts. This is a well-known technique
and applied to both indoor and field experiments (see
[16–20,25–27]), however since blade aerodynamics is

ARTICLE IN PRESS

Fig. 3. Axial force coefficient as function of tip-speed ratio, l;
with tip pitch angle, Y; as a parameter (from [15]).

Fig. 4. Flow visualisation with smoke, revealing the tip vortices
(from [16]).

Fig. 5. Flow visualisation with smoke, revealing smoke trails
being ‘sucked’ into the vortex spirals (from [16]).

Fig. 6. Flow visualisation experiment at TUDelft, showing two
revolutions of tip vortices for a two-bladed rotor (from [24]).

Fig. 7. Flow visualisation with smoke grenade in tip, revealing
smoke trails for the NREL turbine in the NASA-Ames wind
tunnel (from Hand [13]).

L.J. Vermeer et al. / Progress in Aerospace Sciences 39 (2003) 467–510474

Figure 3.3: Tip vortices originating at blade tips. Reproduced from [2].

is that the fourth order method is less susceptible to wiggles than the second order
method; this was also noted by Knikker [87].
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Figure 3.4: Vorticity field at t “ 8, 1002 volumes, Re “ 1000.

An accuracy study has been performed by computing a reference solution on a
320 ˆ 320 grid (at t “ 4 and Re “ 100, to have a sufficiently ‘smooth’ solution) with
an explicit Runge-Kutta method and sufficiently small time step (∆t “ 10´2) so
that temporal errors are negligible. On a sequence of coarser grids we compute an
error by interpolating the reference solution to the coarser grid and subtracting the
solution on that coarser grid. The resulting errors in velocity and pressure (in the
maximum norm) are shown in figure 3.5a. It is clear that on sufficiently fine meshes
both the second and fourth order scheme attain their theoretical convergence rates,
for both velocity and pressure. In figure 3.5b we have also shown the results when
using implicit Runge-Kutta methods for the temporal integration (to be discussed
in chapter 7) - the second order Gauss method (implicit midpoint) with the second
order scheme, and the fourth order Gauss method with the fourth order scheme.
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The time step is now much larger: we use a fixed CFL number of approximately
3. On the coarsest mesh we have ∆t “ 1, meaning that we only perform 4 time
steps. Since the results are indistinguishable compared to figure 3.5a the error is
completely dominated by the spatial error, even at this large time step.
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Figure 3.5: Convergence of spatial error for shear layer problem.





4BOUNDARY TREATMENT

adapted
from [155]The fact that momentum and energy conservation are both governed by the

same equation makes construction of numerical approximations that conserve
both properties difficult. [51]

In chapter 3 we outlined a second and fourth order (interior) discretization on
a staggered grid. In this chapter we will discuss the energy-conserving proper-
ties of these methods, and focus on the role of boundary conditions. To obtain a
fully energy-conserving method, the discrete boundary contributions to the energy
equation should properly mimic the continuous contributions. In literature these
boundary contributions are often not thoroughly treated (like in [203, 116, 42]). We
propose boundary conditions for the second and fourth order discretizations such
that discrete equivalents of the (continuous) equations of section 2.2 are satisfied:
conservation of mass (section 4.1.1), conservation of momentum (section 4.1.2), con-
servation of kinetic energy (section 4.1.3) and the equation for the pressure (section
4.1.6). In section 4.2 we analyse the consequences of the boundary conditions for
the local and global error, which we support with numerical experiments in section
4.3.

4.1 conservation properties of the discrete equations

To mimic the symmetry properties (2.15), (2.18), (2.20) in a discrete setting, and in
order to define a discrete kinetic energy, we need a discrete inner product:

pu, vq :“ uTΩv. (4.1)

This is the discrete analogue of equation (2.10).

4.1.1 Mass

We will investigate if the second and fourth order discretizations satisfy a discrete
equivalent of

ż

Ω
∇ ¨ u dΩ “

ż

BΩ
u ¨ n dΓ “ 0. (4.2)

37
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4.1.1.1 Second order

It suffices to focus on the fluxes of the u-component (in x-direction). In matrix
notation the discrete divergence operator, equation (3.3), reads

Mu
1 u “

»

—

—

–

´1 1

´1 1
. . . . . .

fi

ffi

ffi

fl

»

—

—

—

—

—

–

ub,j

u1,j

u2,j
...

fi

ffi

ffi

ffi

ffi

ffi

fl

, (4.3)

see figure 4.1b. Discrete global mass conservation is found by summing the contri-
bution of all finite volumes in x-direction (taking the column sum of (4.3)):

1T Mu
1 u “ ´ub,j ` (right boundary contribution). (4.4)

Here 1T denotes a row vector with entries one. Equation (4.4) is the discrete equi-
valent of (4.2). When the midpoint rule (3.4) is employed for ub,j, and ub,j is not con-
stant along a boundary, an Oph2q error is introduced in this equation, and it does
not evaluate to zero (like (4.2)). Instead, one could use the exact integral ub,j in the
discretization of the continuity equation, but that is often not available (e.g. a tur-
bulent inflow field). Fortunately, flow problems with an inflow boundary (nonzero
ub,j) necessarily include an outflow boundary, where the velocity adapts itself such
that (4.4) evaluates exactly to 0.

4.1.1.2 Fourth order

The divergence operator for the fourth order method is given by equation (3.11).
To investigate the boundary contribution we evaluate (3.11) for i “ 1, i.e. the finite
volume around p1,j. Figure 4.1b shows that the coarse volume extends over the
physical boundary. We can focus on M3. The choice for u´1,j should be such that
the resulting divergence operator satisfies a summation-by-parts property. By taking
the second order extrapolation

u´1,j “ 2ub,j ´ u1,j, (4.5)

the resulting divergence operator reads

Mu
3 u “

»

—

—

—

—

—

–

´2 1 1

´1 1

´1 1
. . . . . . . . . . . .

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

ub,j

u1,j

u2,j

u3,j
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (4.6)
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and the discrete equivalent of (4.2) is

1T Mu
3 u “ ´3ub,j ` (right boundary contribution). (4.7)

After employing (3.12), a factor 9 results, which is due to coarse grid volumes being
9ˆ larger than the fine grid volumes (in two dimensions). In other words: each
fine grid volume is covered by 9 different coarse volumes. We note that with the
boundary condition for the divergence operator suggested in VV [203],

u´1,j “ u1,j, (4.8)

the summation-by-parts property (4.7) is not satisfied.
In section 4.1.2 the divergence of a coarse volume centered around the ghost point

p0,j will be needed in the discretization of the convective terms (see figure 4.1a):

pMuq0,j “ α1pub,j ` v0,j ´ u´1,j ´ v0,j´1q ´ pu1,j ` v0,j`1 ´ u´2,j ´ v0,j´2q. (4.9)

This divergence is not enforced to be zero by the divergence operator. However,
by properly choosing the ghost values it can be expressed in terms of pMuq1,j, the
divergence of the volume centered around p1,j. Taking, like (4.5),

u´2,j “ 2ub,j ´ u2,j, (4.10)

u´1,j “ 2ub,j ´ u1,j, (4.11)

and choosing Neumann-type conditions for v:

v0,j “ v1,j, (4.12)

v0,j “ v1,j, (4.13)

equation (4.9) can be written as

pMuq0,j “ α1pub,j ` v0,j ´ u´1,j ´ v0,j´1q ´ pu1,j ` v0,j`1 ´ u´2,j ´ v0,j´2q

“ α1pu1,j ` v1,j ´ ub,j ´ v1,j´1q ´ pu2,j ` v1,j`1 ` u1,j ´ v1,j´2 ´ 2ub,jq

“ pMuq1,j “ 0.

(4.14)

Once the boundary conditions for the divergence operator are chosen, the gradi-
ent operator for the pressure is fixed by requiring a discrete equivalent of equation
(2.17), as will be discussed in section 4.1.3. The boundary conditions for the pres-
sure should therefore not be set separately from those for the velocity (in contrast to
what is done in [116]). The boundary conditions for the divergence operator also in-
fluence the boundary treatment of the convective operator. This will also be further
detailed in section 4.1.3.
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u´1,j u1,jub,j

v0,j

v0,j´1

v0,j`1

v0,j´2

p0,ju´2,j
×

(a) i “ 0

u1,j u2,jub,j

v1,j

v1,j´1

v1,j`1

v1,j´2

p1,ju´1,j
×

(b) i “ 1

Figure 4.1: Boundary conditions divergence operator.

4.1.2 Momentum

In this section we investigate the discrete equivalents of the following identities:
ż

Ω
∇ ¨ pu uq dΩ “

ż

BΩ
u u ¨ n dΓ, (4.15)

ż

Ω
∇p dΩ “

ż

BΩ
p n dΓ, (4.16)

and
ż

Ω
∇2u dΩ “

ż

BΩ

Bu
Bn

dΓ. (4.17)

In contrast to the pressure finite volumes, the finite volumes associated with the
u- and v-velocity components do not cover the entire computational domain (see
for example figure 4.2a). In order to mimic (4.15) and (4.16) discretely, we propose
a new approach that includes a discretization of the boundary volumes. This al-
lows us to perform a discrete summation over the entire domain. Even though this
discretization is not needed in practical computations, it is necessary to study the
boundary contributions to the energy equation (section 4.1.3). An alternative ap-
proach, which does not require the discretization of the boundary volumes, follows
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by writing (4.15) and (4.16) for the domain covered by the interior finite volumes
(instead of the complete computational domain), but this approach is less suitable
for the fourth order discretization.

4.1.2.1 Second order

We start again with the second order discretization to provide insight into the de-
rivation of the fourth order method. In the interior the discretization conserves
momentum since the fluxes of neighboring finite volumes cancel (the telescoping
property of the finite volume method); see section 3.2.2. The conserved quantities
are

1TΩuu, 1TΩvv. (4.18)

Near a vertical boundary we introduce the discretization of a ‘half’ boundary
volume (the hatched area shown in figure 4.2a), so that the entire computational
domain is covered. This discretization is taken such that global momentum is con-
served:

pΩu
1 qb,j

dub,j

dt
` u1{2,ju1{2,j ´ ub,jub,j “ ´pp1j ´ pb,jq ` ν

˜

ˆ

Bu
Bx

˙

1{2,j
´

ˆ

Bu
Bx

˙

b,j

¸

.

(4.19)
We have left out the vertical fluxes, because they cancel upon summation in y-
direction. After summation in x-direction we obtain:

1TCu
1 pu, vqu “ ´ub,jub,j ` (right boundary contribution), (4.20)

1TGu
1 p “ ´pb,j ` (right boundary contribution), (4.21)

1T∆u
1

ˆ

Bu
Bx

˙

“ ´

ˆ

Bu
Bx

˙

b,j
` (right boundary contribution). (4.22)

These are the discrete counterparts of the u-component of equations (4.15)-(4.17).
Face-integrated quantities such as u and p are approximated by the midpoint meth-
od, which is an Oph2q approximation to the exact integral value. The discrete sum-
mation-by-parts expressions (4.20) and (4.21) do therefore not mimic the continu-
ous relations exactly, except if the boundary values are constant or varying linearly
along the boundary. One particular and important example is ub,j “ 0, when the
discrete convective terms do not contribute to the global momentum balance, and
(4.20) mimics (4.15) exactly in a discrete sense.

The finite volumes of the v-component are aligned with a vertical boundary, so no
boundary volume is necessary. The discretization of the first volume reads (leaving
out vertical fluxes):

pΩv
1q1,j

dv1,j

dt
` u1,j`1{2v3{2,j ´ ub,j`1{2vb,j “ ν

˜

ˆ

Bv
Bx

˙

3{2,j
´

ˆ

Bv
Bx

˙

b,j

¸

. (4.23)
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The discrete equivalent of the v-component of (4.15) is

1TCv
1pu, vqv “ ´ub,j`1{2vb,j ` (right boundary contribution), (4.24)

and similarly (4.17) becomes

1T∆v
1

ˆ

Bv
Bx

˙

“ ´

ˆ

Bv
Bx

˙

b,j
` (right boundary contribution). (4.25)

The second order discretization of the convective terms does not require the impos-
ition of ghost values. The diffusive gradients Bu

Bx and Bv
Bx are still to be expressed in

terms of u and v. This will be done in section 4.1.3, in such a way that the diffusive
terms are dissipative.

The analysis near a horizontal boundary can be performed in a similar fashion.

4.1.2.2 Fourth order

In the interior, conservation of momentum is obtained as for the second order case,
although the cancellation of interior fluxes for the coarse volumes takes place over
a distance of 3∆x: the flux through the right face of a coarse volume around ui,j
cancels with the flux through the left face of a coarse volume around ui`3,j. The
conserved quantity is 1Tpα1Ωu

1 ´ Ωu
3 qu. Note that 1TΩu

1 1 “
ş

dΩ “ |Ω|, and that
1TΩu

3 1 “ 9|Ω|: every small volume is covered by 9 different coarse volumes. The
total momentum conserved by the discretization is therefore not the discrete ana-
logue of the single volume integral

ş

Ω u dΩ, but the analogue of a combination of
two instead.

The implied discretization at the boundary is more involved than in the second
order case. It is necessary to introduce boundary volumes at i “ 1, i “ 2 and
i “ 3, see figures 4.2b-4.2d, which are taken such that the entire domain is covered
completely by finite volumes. The boundary volumes are such that on each coarse
grid discretization (I, II and III) a summation-by-parts identity is satisfied:

I : ´pΩu
3 qI

dub,j

dt
´

´

ub,jub,j ´ u´1{2,ju´1{2,j

¯

“ ´pp0,j ´ pb,jq

´ ν

¨

˝

˜

Bu
Bx

¸

b,j

´

˜

Bu
Bx

¸

´1{2,j

˛

‚,
(4.26)

II : pΩu
3 qI I

dub,j

dt
` u1{2,ju1{2,j ´ ub,jub,j “ ´pp1,j ´ pb,jq

` ν

¨

˝

˜

Bu
Bx

¸

1{2,j

´

˜

Bu
Bx

¸

b,j

˛

‚,
(4.27)
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III : pΩu
3 qI I I

dub,j

dt
` u3{2,ju3{2,j ´ ub,jub,j “ ´pp2,j ´ pb,jq

` ν

¨

˝

˜

Bu
Bx

¸

3{2,j

´

˜

Bu
Bx

¸

b,j

˛

‚.
(4.28)

Here we have focused again on the horizontal fluxes. The boundary volumes pΩu
3 qI ,

pΩu
3 qI I and pΩu

3 qI I I are illustrated by the hatched areas. The implied discretization
of the boundary volume is given by the sum of the three expressions above:

pΩu
3 qb,j

dub,j

dt
` u´1{2,ju´1{2,j ` u1{2,ju1{2,j ` u3{2,ju3{2,j ´ 3ub,jub,j “

´ pp0,j ` p1,j ` p2,j ´ 3pb,jq

` ν

¨

˝

˜

Bu
Bx

¸

´1{2,j

`

˜

Bu
Bx

¸

1{2,j

`

˜

Bu
Bx

¸

3{2,j

´ 3

˜

Bu
Bx

¸

b,j

˛

‚,
(4.29)

where
pΩu

3 qb,j “ ´pΩu
3 qI ` pΩu

3 qI I ` pΩu
3 qI I I “ pΩu

3 qI I I . (4.30)

Summing the contribution of all (interior and boundary) fluxes gives

1TCu
3 pu, vqu “ ´3ub,jub,j ` (right boundary contribution), (4.31)

1TGu
3 p “ ´3pb,j ` (right boundary contribution), (4.32)

and

1T∆u
3

˜

Bu
Bx

¸

“ ´3

˜

Bu
Bx

¸

b,j

` (right boundary contribution), (4.33)

the discrete counterparts of equations (4.15)-(4.17).
For the v-component near a vertical boundary a different technique has to be ap-

plied. When introducing, like for the u-component, a (‘negative’) boundary volume
for i “ 1 and a (‘positive’) boundary volume for i “ 3, such that on each coarse grid
momentum is conserved, one would obtain a discretization for a boundary volume
with zero size, which is not appropriate when studying the energy equation. In-
stead, we construct the discretization for v1,j as the sum of the boundary volumes
of coarse grid II and III, see figure 4.3:

pΩv
3q1,j

dv1,j

dt
` u1,j`1{2v3{2,j ` u2,j`1{2v5{2,j ´ 2ub,j`1{2vb,j “

ν

¨

˝

˜

Bv
Bx

¸

5{2,j

`

˜

Bv
Bx

¸

3{2,j

´ 2

˜

Bv
Bx

¸

b,j

˛

‚, (4.34)
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where pΩv
3q1,j “ ΩI I ` ΩI I I . In contrast to equation (4.29), v1,j in equation (4.34) is

an unknown in the system of equations and is solved for. Summation in x-direction
gives

1TCv
3pu, vqv “ ´3ub,j`1{2vb,j ` (right boundary contribution), (4.35)

and

1T∆v
3

˜

Bv
Bx

¸

“ ´3

˜

Bv
Bx

¸

b,j

` (right boundary contribution), (4.36)

which are the discrete equivalents of the v-component of (4.15) and (4.17).
Finally it may be noted that momentum is conserved independently of the treat-

ment of the ghost values (such as p0,j, u´1{2,j, etc.).
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4.1.3 Kinetic energy

In this section we investigate if equations (2.13), (2.17) and (2.19) (with v replaced
by u), i.e.

ż

Ω
rpu ¨ ∇qus ¨ u dΩ “

1
2

ż

BΩ
rpu ¨ uqus ¨ n dΓ, (4.37)

ż

Ω
∇p ¨ u dΩ “

ż

BΩ
p u ¨ n dΓ ´

ż

Ω
p∇ ¨ u dΩ, (4.38)

ż

Ω
∇2u ¨ u dΩ “

ż

BΩ
u ¨

Bu
Bn

dΓ ´

ż

Ω
∇u : ∇u dΩ, (4.39)

can be satisfied in a discrete sense. The total kinetic energy (which should be con-
served by the discretization in case of inviscid flow according to equation (2.22))
is obtained by multiplying the u-momentum equation with u, the v-momentum
equation with v, like in the continuous case:

K :“
1
2

pu, Ωuuq `
1
2

pv, Ωvvq. (4.40)

4.1.3.1 Second order

Equation (4.37) indicates that in the interior the convective terms do not contribute
to the kinetic energy. This can be proven in a discrete sense by showing that the
divergence form (3.5) can be written in skew-symmetric form. Indeed, if Cpcq is
skew-symmetric, then uTCpcqu “ 0 for any u. When constant (grid-independent)
weights are used to interpolate u and v, equation (3.5) can be written in the skew-
symmetric form

pCu
1 pu, vquqi,j “

ui`1{2,j
1
2

ui`1,j ´ ui´1{2,j
1
2

ui´1,j ` vi`1{2,j
1
2

ui,j`1 ´ vi`1{2,j´1
1
2

ui,j´1`

1
2

ui,j

„

1
2

pui`1,j ´ ui,j ` vi`1,j ´ vi`1,j´1q `
1
2

pui,j ´ ui´1,j ` vi,j ´ vi,j´1q

ȷ

. (4.41)

The term in square brackets features the sum of the divergence of the pressure
volumes to the left and right of ui,j: the diagonal coefficient of the convective oper-
ator is therefore zero, like in the continuous case (equation (2.12)).

Near boundaries the convective discretization should not be skew-symmetric in
case energy flows in or out of the domain, corresponding to the boundary integral
in equation (2.13). We elaborate the discretization near a boundary, given by (4.19),
where now the vertical fluxes are considered too:

pCu
1 pu, vquqb,j “ u1{2,ju1{2,j ´ ub,jub,j ` v3{4,jub,j`1{2 ´ v3{4,j´1ub,j´1{2. (4.42)
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These terms are used to rewrite the divergence form into skew-symmetric form. In
matrix notation Cu

1 pu, vq reads

Cu
1 pu, vq “

»

—

—

—

—

—

—

—

—

–

´ub,j ` 1
2 u1{2,j` 1

2 u1{2,j1
2 pv3{4,j ´ v3{4,j´1q

´ 1
2 u1{2,j 0 1

2 u3{2,j

´ 1
2 u3{2,j 0

. . .
. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (4.43)

The first row represents the equation for ub,j, the first column represents the con-
tribution of ub,j. The lower-right part of the matrix (which is indicated by the line)
represents the internal discretization. The matrix Cu

1 pu, vq is skew-symmetric except
for its upper left entry, so the discrete version of (4.37) becomes

uTCu
1 pu, vqu “ u2

b,j

ˆ

´ub,j `
1
2

u1{2,j `
1
2

pv3{4,j ´ v3{4,j´1q

˙

. (4.44)

The vertical flux v3{4,j should be computed as v3{4,j “ 1
2 v1,j since this leads to

uTCu
1 pu, vqu “ ´

1
2

u2
b,jub,j `

1
4

u2
b,jpu1,j ´ ub,j ` v1,j ´ v1,j´1q,

“ ´
1
2

u2
b,jub,j, (4.45)

which is indeed the discrete equivalent of (4.37). Property (4.45) is only exact if ub
is constant or varying linearly along a boundary; in all other cases it is an Oph2q

approximation to equation (4.37).
The convective matrix for the v-component reads

Cv
1pu, vqv “

»

—

—

–

1
2 u1,j`1{2 ` 1

2 pv1,j`1{2 ´ v1,j´1{2q 1
2 u1,j`1{2

´ 1
2 u1,j`1{2 0 1

2 u2,j`1{2
. . .

fi

ffi

ffi

fl

»

—

—

–

v1

v2
...

fi

ffi

ffi

fl

`

»

—

—

–

´ub,j`1{2vb,j

0
...

fi

ffi

ffi

fl

, (4.46)

and the contribution to the energy equation becomes

vTCv
1pu, vqv “ ´

1
2

v1,jub,j`1{2p2vb,j ´ v1,jq. (4.47)
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Surprisingly, this term does not evaluate to ´ 1
2 v2

b,jub,j`1{2, which one might have
expected intuitively. However, upon Taylor expanding v1,j around vb,j,

v1,j “ vb,j `
1
2

hpvxqb,j ` Oph2q, (4.48)

we see that
1
2

v1,jub,j`1{2p2vb,j ´ v1,jq “
1
2

ub,j`1{2v2
b,j ` Oph2q, (4.49)

which is, like (4.45), a second order approximation to the continuous boundary
integral. However, in contrast to (4.45), this approximation is not exact for constant
ub and vb.

For the pressure gradient terms the discrete second order version of (4.38) reads
(here we concentrate again on summing in x-direction):

uTGu
1 p ` vTGv

1 p “ uTGu
1 p ` vTGv

1 p (4.50)

“ ub,jpp1,j ´ pb,jq ` u1,jpp2,j ´ p1,jq ` . . .

v1,jpp1,j`1 ´ p1,jq ` v1,j´1pp1,j ´ p1,j´1q ` . . .

“ ´ub,j pb,j ´ p1,j pu1,j ´ ub,j ` v1,j ´ v1,j´1q
looooooooooooooomooooooooooooooon

pM1uq1,j

´p2,j p . . . q
loomoon

pM1uq2,j

` . . .

“ ´ub,j pb,j ` (right boundary contribution). (4.51)

In equation (4.50) we have switched from p to u: this is valid, even on non-uniform
grids, since both face quantities are approximated using (3.4). In matrix notation
the above result can be written as

uTG1 p “ ´ub,j pb,j ` (right boundary contribution) ´ pT M1u. (4.52)

In case of no-penetration or periodic boundary conditions one obtains the well-
known symmetry relation between the divergence and the gradient operator:

M1 “ ´GT
1 . (4.53)

The contribution of the diffusive terms to the energy equation reads

uTDu
1 u “

“ ub,j

˜

ˆ

Bu
Bx

˙

1{2,j
´

ˆ

Bu
Bx

˙

b,j

¸

` u1,j

˜

ˆ

Bu
Bx

˙

3{2,j
´

ˆ

Bu
Bx

˙

1{2,j

¸

` . . .

“ ´ub,j

ˆ

Bu
Bx

˙

b,j
´

ˆ

Bu
Bx

˙

1{2,j
pu1,j ´ ub,jq ´

ˆ

Bu
Bx

˙

3{2,j
pu2,j ´ u1,jq ` . . .

(4.54)
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With the following discretization of the first order derivatives,

ˆ

Bu
Bx

˙

i`1{2,j
“ ∆y

ˆ

ui`1,j ´ ui,j

∆x

˙

, (4.55)

equation (4.54) can be written as

uTDu
1 u “ ´ub,j

ˆ

Bu
Bx

˙

b,j
´ ∆x∆y

˜

ˆ u1,j ´ ub,j

∆x

˙2
`

ˆ

u2,j ´ u1,j

∆x

˙2
` . . .

¸

, (4.56)

which is the discrete equivalent of (4.39). The derivative at the boundary does not
have to be specified since it is not needed in practical calculations.

The v-component can be treated in a similar fashion:

vTDv
1v “ v1,j

˜

ˆ

Bv
Bx

˙

3{2,j
´

ˆ

Bv
Bx

˙

b,j

¸

` v2,j

˜

ˆ

Bv
Bx

˙

5{2,j
´

ˆ

Bv
Bx

˙

3{2,j

¸

` . . .

“ ´v1,j

ˆ

Bv
Bx

˙

b,j
´ ∆x∆y

˜

ˆ

v2,j ´ v1,j

∆x

˙2
`

ˆ

v3,j ´ v2,j

∆x

˙2
` . . .

¸

. (4.57)

By taking the approximation

ˆ

Bv
Bx

˙

b,j
“ ∆y

˜

v1,j ´ vb,j
1
2 ∆x

¸

, (4.58)

equation (4.57) can be written as

vTDv
1v “ ´vb,j∆y

˜

v1 ´ vb
1
2 ∆x

¸

´ ∆x∆y

˜

1
2

ˆ v1,j ´ vb,j

∆x

˙2
`

ˆ

v2,j ´ v1,j

∆x

˙2
`

ˆ

v3,j ´ v2,j

∆x

˙2
` . . .

¸

, (4.59)

which is the discrete counterpart of equation (4.39).

4.1.3.2 Fourth order

Like the second order scheme, the fourth order convective discretization (3.15) can
be rewritten in skew-symmetric form. To that end, the diagonal coefficient is ex-
pressed in terms of the divergence of four surrounding finite volumes. For details
we refer to [203].

Near boundaries this skew-symmetric form is used to derive the contribution
to the energy equation. The analysis is detailed in appendix A.2.1. An important
point is the choice of the ghost values. Here the ghost values for the u-component
at a vertical boundary are defined by a second-order extrapolation, for example
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u´1,j “ 2ub,j ´ u1,j. The ghost values for the v-component at a vertical boundary are
given by Neumann type conditions, see (4.12), (4.13) and (A.26). This leads to

uTCu
3 pu, vqu “ ´

3
2

ub,ju2
b,j ` Oph2q, (4.60)

vTCv
3pu, vqv “ ´

3
2

ub,j`1{2v2
b,j ` Oph2q. (4.61)

These equations reveal that the boundary integrals in (4.37) are not satisfied dis-
cretely (not even for constant boundary data) but contain an Oph2q error. However,
in the important case of ub,j “ 0 the discretization mimics the continuous property
(no energy contribution by the convective terms) exactly. At a horizontal boundary
the same analysis applies.

The contribution of the pressure gradient to the energy equation for the fourth
order method is given by

uTGu
3 p ` vTGv

3 p “ ub,jpp0,j ` p1,j ` p2,j ´ 3pb,jq ` u1,jpp3,j ´ p0,jq

` u2,jpp4,j ´ p1,jq ` (v-component)

“ ´3ub,j pb,j ` p0,jpu1,j ´ ub,jq

` p1,jpu2,j ´ ub,j ` v1,j`1 ´ v1,j´2q ` . . . (4.62)

“ ´3ub,j pb,j ` p1,j pu2,j ` u1,j ´ 2ub,j ` v1,j`1 ´ v1,j´2q
loooooooooooooooooooooomoooooooooooooooooooooon

pM3uq1,j

` . . . (4.63)

“ ´3ub,j pb,j ` (right boundary contribution). (4.64)

The Neumann condition p0,j “ p1,j is necessary to write equation (4.62) as (4.63):
the term in brackets in (4.63) then evaluates to 0 since it is the divergence of a coarse
volume around p1,j (see section 4.1.1.2). In short notation, the fourth order scheme
satisfies

uTG3 p “ ´3ub,j pb,j ` (right boundary contribution) ´ pT M3u. (4.65)

There are two important notes to be made regarding the condition p0,j “ p1,j. Firstly,
this condition follows from the discretization of the divergence operator and by re-
quiring (4.65). Consequently, for the discretization of the interior points, no explicit
pressure boundary conditions need to be specified separately from those for the velocity,
as was the case for the second order discretization. Notice that pressure boundary
conditions were not specified for the continuous problem either. Secondly, the ‘im-
plied’ discrete Neumann condition is not homogeneous, in contrast to what p0,j “ p1,j
suggests. This will be detailed in section 4.1.6. We note that boundary condition
(4.8), as suggested in [203], effectively leads to a Dirichlet condition for the pres-
sure. Near solid walls this results into an artificial boundary layer in the pressure.
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Lastly, we discuss the contribution of the diffusive terms to the energy equation.
In appendix A.2.2 we show that for the fourth order scheme:

uT Duu “ ´

ˆ

Bu
Bx

˙

b,j
pα1 ´ 9qub,j ` . . .

´ 72∆x∆y

«

ˆ

9
8

u1,j ´ ub,j

∆x
´

1
8

u2,j ` u1,j ´ 2ub,j

3∆x

˙2

`

ˆ

9
8

u2,j ´ u1,j

∆x
´

1
8

u3,j ´ ub,j

3∆x

˙2
` . . .

ff

. (4.66)

This is the discrete equivalent of equation (4.39), with the first term representing
the boundary integral, and the second term the volume integral.

4.1.4 Extension to higher order

The boundary conditions that are derived in sections 4.1.1-4.1.3 are all based on first
or second order extrapolations. This limits the local truncation error of the fourth
order scheme, as will be shown in section 4.2. In this section we will investigate if
the ghost values can be obtained by higher order extrapolations while still satisfying
discrete equivalents of the continuous properties derived in chapter 2.2. We start
with the divergence operator. Equation (4.5) can be generalized to

u´1,j “ δ0ub,j ` δ1u1,j ` δ2u2,j ` δ3u3,j ` . . . , (4.67)

hence the divergence operator becomes

Mu
3 u “

»

—

—

—

—

—

–

´δ0 ´δ1 1 ´ δ2 ´δ3

´1 1

´1 1
. . . . . . . . .

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

ub,j

u1,j

u2,j

u3,j
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (4.68)

The only solution that satisfies the summation-by-parts identity (4.7) is δ0 “ 2,
δ1 “ ´1, δ2 “ δ3 “ . . . “ 0, which equals boundary condition (4.5). The other bound-
ary conditions derived in section 4.1.1, equations (4.10)-(4.13), cannot be changed
following similar reasoning.

We can also try more general formulations for u´1{2,j and u1{2,j (see equations
(A.11)-(A.12)):

u´1{2,j “ β0ub,j ` β1u1,j ` β2u2,j ` β3u3,j ` . . . , (4.69)

u1{2,j “ γ0ub,j ` γ1u1,j ` γ2u2,j ` γ3u3,j ` . . . . (4.70)
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The coefficients β and γ are to be determined from order and symmetry require-
ments. Requiring skew-symmetry in case of ub,j “ 0 leads to

δ0 ´ δ1 ` β1 “ 0, (4.71)

´δ2 ´ β0 ` β2 “ 0, (4.72)

δ2 ´ β1 “ 0, (4.73)

δ1 “ β2 “
1
2

, (4.74)

δ3 “ β3 “ 0. (4.75)

Requiring a consistent (first-order) interpolation gives the conditions δ0 ` δ1 ` δ2 “

1 and β0 ` β1 ` β2 “ 1. The solution to these equations leads to interpolations
(A.11)-(A.12). The resulting coefficients also satisfy the conditions for second order
interpolation, but not higher order conditions. Skew-symmetry and higher order are
therefore conflicting requirements. Higher-order treatment of boundary conditions,
as in [116] for instance, violates the skew-symmetry of the convective operator.

An important starting point in our analysis is that (skew-)symmetry is defined
in terms of the standard inner product, equation (4.1). When generalizing the inner
product higher order can be combined with symmetry properties, see e.g. [184, 106]
for hyperbolic and parabolic problems, respectively. Perhaps also for the incom-
pressible Navier-Stokes equations such an adapted inner product can be found.
However, the pressure will then contribute to the energy equation. This is a subject
of further research.

4.1.5 Summary

In table 4.1 we summarize the old and new boundary conditions for the fourth
order scheme. The old boundary conditions (4.79) form a rather unclear mix of Di-
richlet and Neumann conditions for both u- and v-component. The new boundary
conditions (4.80) feature Dirichlet conditions for the u-component, whereas Neu-
mann type conditions are prescribed for the v-component. Furthermore, our new
discretization of the v-component near the wall does not require the prescription of
v´2,j.

In case of no-slip or periodic boundary conditions, the symmetry properties of
the discrete operators can be summarized as

pGp, uq “ ´pp, Muq, (4.76)

pCpcqu, uq “ 0, (4.77)

pDu, vq “ pu, Dvq, pDu, uq ď 0. (4.78)

The first property is the relation between the divergence and gradient operator. The
second property indicates that the convective terms do not change the total energy
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of the flow (if Mc “ 0). The third property shows that the diffusive terms dissipate
energy.

Old [203] New

u´1,j “ 2ub,j ´ u1,j

u´2,j “ u2,j

u´1,j “ u1,j

u´1,j “ u1,j

u´2,j “ u2,j (4.79)

v0,j “ 2vb,j ´ v1,j

v0,j “ 2vb,j ´ v1,j

v0,j “ 2vb,j ´ v1,j

v´2,j “ v3,j

u´1,j “ 2ub,j ´ u1,j

u´2,j “ 2ub,j ´ u2,j

u´1,j “ 2ub,j ´ u1,j

u´1,j “ 2ub,j ´ u1,j

u´2,j “ 2ub,j ´ u2,j (4.80)

v0,j “ v1,j

v0,j “ v1,j

v0,j “ v1,j

Table 4.1: Old and new boundary conditions for fourth order scheme.

4.1.6 Pressure

In the incompressible Navier-Stokes equations the pressure is a Lagrange multi-
plier which makes the velocity field divergence-free. There is no pressure evolution
equation and as such it is not a conserved quantity like mass, momentum and en-
ergy. Furthermore, the original PDEs (2.2)-(2.3) do not contain boundary conditions
for the pressure. However, an equation for the pressure with associated boundary
conditions can be derived, and it is important to see if a discretization of the incom-
pressible Navier-Stokes equations inherits the continuous properties of the pressure
in a discrete sense. The pressure Poisson equation (PPE) is obtained by taking the
time-derivative of the continuity equation and substituting the momentum equation
[59]:

∇2 p “ ∇ ¨ Npuq, (4.81)

where Npuq “ ´pu ¨ ∇qu ` ν∇2u. On no-slip boundaries, where u “ ub, the bound-
ary condition for the pressure is found by taking the normal component of the
momentum equations at the boundary, i.e.

Bp
Bn

“

ˆ

´
Bub
Bt

` Npuq

˙

¨ n. (4.82)
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Like in the continuous case, in a discrete setting the pressure Poisson equation is
formed by differentiating the divergence-free constraint (in time) and substituting
the momentum equations:

MΩ´1Gp “ MΩ´1p´Cpcqu ` Duq “ MNpuq. (4.83)

The boundary conditions are ‘built’ into the operators M and G; see the discus-
sion at the end of section 4.1.3. To obtain the effective boundary conditions for the
pressure, we compare the Laplace operator at the boundary to the Laplace operator
at an inner point, and subtract these two [197, 59]. For the second order method
it is known that this gives a boundary condition which is the discrete equivalent
of equation (4.82). In appendix A.1 we detail such an analysis for the fourth order
method. The resulting effective boundary conditions at i “ 1, i “ 2 and i “ 3 are

1
∆x

ˆ

1
8

pp3,j ´ p´2q ´
27
4

pp2,j ´ p´1,jq `
783
8

pp1,j ´ p0,jq

˙

“ α1Nu
b,j

´ α2pNu
´1,j ` Nu

1,jq ` p´α1 ` 2α2q 9ub,j,
(4.84)

1
∆x

ˆ

1
8

pp2,j ´ p´1,jq ´
27
4

pp1,j ´ p0,jq

˙

“ ´α2Nu
b,j ` α2 9ub,j, (4.85)

1
∆x

1
8

pp1,j ´ p0,jq “ 0. (4.86)

The effective pressure boundary conditions at the three points i “ 1, 2, and 3 are
not consistent approximations to the continuous boundary conditions (4.82). This
appears to be in line with a remark made by Sani et al. [156], who state ‘Whenever
the discrete PPE is generated from a consistent (but low order) discretization of the
Navier-Stokes equations, the resulting PPE will always converge to (4.82)’. On aver-
age the pressure boundary conditions are still correct. This follows by summing the
effective boundary conditions for i “ 1, i “ 2 and i “ 3, leading to

1
∆x

ˆ

1
8

pp3,j ´ p´2q ´
53
8

pp2,j ´ p´1,jq `
365
4

pp1,j ´ p0,jq

˙

“

pα1 ´ α2qNu
b,j ´ α2pNu

1,j ` Nu
´1,jq ` p´α1 ` 3α2q 9ub,j. (4.87)

Expanding the left side in Taylor expansions around the boundary gives

1
∆x

ˆ

1
8

pp3,j ´ p´2q ´
53
8

pp2,j ´ p´1,jq `
365
4

pp1,j ´ p0,jq

˙

“

72ppxqb ´ 3∆x2 pxxx ` Op∆x4q. (4.88)

Similarly, expansion of the right side gives

pα1 ´ α2qNu
b,j ´ α2pNu

1,j ` Nu
´1,jq ` p´α1 ` 3α2q 9ub,j “
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´ 72 9ub,j ` 72Nu
b,j ´ 3∆x2pNu

xxqb,j ` Op∆x4q. (4.89)

Upon division by the effective (pressure) volume size we find that the fourth order
method leads to a consistent effective boundary condition for the pressure:

ppxqb “ Nu
b,j ´ 9ub,j ` Op∆x2q, (4.90)

which is the discrete approximation to equation (4.82).

4.2 order of accuracy analysis

In this section we investigate the effect of symmetry-preserving boundary condi-
tions on local and global order behavior. We consider the linear convection-diffusion
equation as a special case of the Navier-Stokes equations (2.3) in one dimension:

c
dû
dx

“ ν
d2û
dx2 , 0 ď x ď 1, c ă 0, ν ą 0, (4.91)

where c is the convecting velocity, û the convected velocity and ν the viscosity
coefficient. To study the effect of no-slip conditions, equation (4.91) is supplemented
with Dirichlet boundary conditions:

ûp0q “ ub “ 0, ûp1q “ 1. (4.92)

In operator notation equation (4.91) can be concisely written as

L̂û “ f̂ , (4.93)

where

L̂ ” c
d

dx
´ ν

d2

dx2 , f̂ “ 0. (4.94)

For small values of ν a boundary layer develops at x “ 0. Defining ε “ ν{c (ε ă 0),
the exact solution to equation (4.91) is given by

ûpxq “
ex{ε ´ 1
e1{ε ´ 1

. (4.95)

4.2.1 Discretization

The discretization of the convective term, equation (3.15), is restricted to 1D by
taking c “ cx “ constant and cy “ 0:

pCuqi “ α1

ˆ

ui`1 ` ui
2

´
ui ` ui´1

2

˙

´

ˆ

ui`3 ` ui
2

´
ui ` ui´3

2

˙

, (4.96)
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where α1 “ 33 “ 27. Without loss of generality we consider the discretization at the
left boundary (where the boundary layer is located). Following section 4.1.5, these
boundary conditions are given by equation (4.80):

u0 “ ub, u´1 “ 2ub ´ u1, u´2 “ 2ub ´ u2. (4.97)

Restricting the convective discretization for the coarse grid, equation (A.13), to one
dimension (u “ c, v “ 0) leads to

C3 “

»

—

—

—

—

—

—

—

—

–

´ 1
2 0 0 1

2

´1 0 1
2 0

. . .

´1 1
2 0 0

´ 1
2 0 0

. . .
. . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (4.98)

The lower right part of the matrix is the discretization of the interior points, which
is used in practical implementation. We note that there is a fundamental difference
between the 2D nonlinear case and the 1D linear case. In the 2D nonlinear case c “

u, and C3 is skew-symmetric for ub “ 0. A homogeneous Dirichlet condition for u
implies a homogeneous Dirichlet condition for c. In the 1D linear case, c “ constant
is prescribed, which is different from the boundary condition for u. The convective
matrix is therefore not skew-symmetric.

The resulting scheme is written as follows:

Lu “ f , (4.99)

where
L “ c C ´ ν D, (4.100)

and
f “ ´c f c ` ν f d. (4.101)

The upper-left corner of the convective part reads (considering only interior points):

C “
1
2

»

—

—

—

—

—

—

—

—

–

0 α1 ´ 1 0 ´1

´α1 ´ 1 0 α1 0 ´1

0 ´α1 0 α1 0
. . .

1 0 ´α1 0 α1
. . . . . . . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (4.102)
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The diffusive part reads

D “
1

24h

»

—

—

—

—

—

—

—

—

–

´2α2
1 ` 2α1 ´ 2 α2

1 ` 2α1 ´ 1 ´2α1 1

α2
1 ` 2α1 ´ 1 ´2α2

1 ´ 2 α2
1 ` 2α1 ´2α1

. . .

´2α1 α2
1 ` 2α1 ´2α2

1 ´ 2 α2
1 ` 2α1

1 ´2α1 α2
1 ` 2α1 ´2α2

1 ´ 2
. . .

. . . . . .

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (4.103)

and the right-hand side vectors read

f c “
ub
2

»

—

—

—

—

—

—

—

–

´pα1 ´ 2q

2

1

0
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, f d “
ub

24h

»

—

—

—

—

—

—

—

–

α2
1 ´ 2α1 ` 2

´2α1 ` 2

1

0
...

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (4.104)

The discretization at the right boundary is done in a similar fashion.

4.2.2 Local truncation error

We first study the local truncation error and then relate it to the global truncation
error. The local truncation error is defined as

τ ” Lû ´ f . (4.105)

Note that strictly speaking a restriction operator is necessary to map the continuous
function û to the space of discrete functions in order to be able to apply L; in this
case the restriction operator is a simple injection: ûi “ ûpxiq. The global error is
defined as

e ” û ´ u, (4.106)

which is related to τ as
Le “ τ. (4.107)

First we discuss the local truncation error of the convective terms, on a uniform
grid. We Taylor expand the exact solution û around a point xi:

ûpxi ` hq “ ûpxiq ` hûp1q
i `

1
2

h2ûp2q
i ` Oph3q, (4.108)
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where ûpnq
i “

´

dn û
dxn

¯

i
, and we apply operator C:

τc
i “ ´

9
5

h5ûp5q

i ` Oph7q. (4.109)

The truncation error is fifth order instead of fourth order due to a factor h hidden
in C (due to the integration over a finite volume). To find τ at i “ 1 and 2, where
the stencil changes due to boundary conditions, we also employ a Taylor expansion
for ûb:

ûb “ û1 ´ hûp1q
1 `

1
2

h2ûp2q
1 ` Oph3q. (4.110)

This leads to the following truncation errors:

τc
1 “ ´2h2ûp2q

1 ` Oph3q, (4.111)

τc
2 “ ´

1
2

h2ûp2q
2 ` Oph3q. (4.112)

It turns out that the local truncation error of the convective discretization at i “ 1
and i “ 2 is limited to first order.

The same procedure is followed to analyze the truncation error of the diffusive
terms:

τd
i “ ´

9
40

h5ûp6q

i ` Oph7q, (4.113)

τd
1 “

25
12

hûp2q
1 ´

25
12

h2ûp3q
1 ` Oph3q, (4.114)

τd
2 “ ´

1
24

hûp2q
2 `

1
12

h2ûp3q
2 ` Oph3q. (4.115)

The diffusive discretization is inconsistent at both i “ 1 and i “ 2.

4.2.3 Global truncation error

Although the discretization at the boundaries is inconsistent, it is possible to have
convergence of the global error. Several techniques exist to study the relation be-
tween the local and global error, see for example [105, 74, 117]. We use the approach
outlined in Wesseling [207]. Recall the relation between the global and local trunca-
tion error, equation (4.107):

Le “ τ. (4.116)

We assume that L is a monotone operator, i.e.

Lv ě 0 implies v ě 0. (4.117)
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Equivalently one can say that L is monotone iff L´1 ě 01. If we can construct a
function E, a so-called barrier function, such that2

LE ě |τ|, (4.118)

then, subtracting this equation from (4.116), we obtain

Lpe ´ Eq ď 0. (4.119)

Since L is assumed monotone, this means that

e ´ E ď 0 Ñ e ď E. (4.120)

The art is to construct a barrier function E of a certain order p, E „ hp, such that
(4.118) holds. Equation (4.120) then proves that the global error e is also of order
p. Since any sufficiently differentiable continuous function can be expressed as a
polynomial expansion, we take E “ hpψpxq with

ψpxq “ a0 ` a1x ` a2x2 ` a3x3 ` a4x4. (4.121)

It is possible to include more terms in this expansion, but this is not necessary.
Note that proving monotonicity of L for the fourth-order discretization is not

trivial. Normally, monotonicity can be proven by showing that L is positive3. For
second-order central discretizations positivity is proven when the mesh Péclet num-
ber h{ν is smaller than 2. For the fourth-order scheme this approach fails, because
L can never be positive, as can be observed by inspecting the signs of the diagon-
als of L. However, a non-positive operator can still be monotone (see for example
[100, 10]). We have not yet found a sufficient condition for monotonicity of the
fourth-order scheme, but it suffices to say that we have found, by explicitly com-
puting L´1, that L is monotone if h{ν is small enough.

4.2.3.1 Interior

In a general interior point i we can write for LE:

Lphpψpxqqi “ 24hp`1
´

c p4a4x3
i ` 3a3x2

i ` 2a2xi ` a1q ´ νp12a4x2
i ` 6a3xi ` 2a2q

¯

.
(4.122)

We recognize the exact first and second derivatives of ψpxq. This is because τc
i and

τd
i only contain derivatives of fifth order and higher: L can differentiate a fourth-

1 a ě 0 means that ai ě 0 @ i; A ě 0 means that Aij ě 0 @ i, j
2 |a| is the grid function with value |ai|

3 positivity implies monotonicity, but not vice versa
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order polynomial exactly. Of course one can take more terms in expansion (4.121);
these will not be exactly differentiated. Since τi is

τi “ c τc
i ´ ντd

i “ ´c
9
5

h5ûp5q

i ` ν
9
40

h5ûp6q

i ` Oph7q, (4.123)

we find that LE ´ |τ| can be written as

LEi ´ |τi| “ 24 hp`1
´

c p4a4x3
i ` 3a3x2

i ` 2a2xi ` a1q ´ νp12a4x2
i ` 6a3xi ` 2a2q

¯

´ h5
ˇ

ˇ

ˇ

ˇ

´c
9
5

ûp5q

i ` ν
9

40
ûp6q

i

ˇ

ˇ

ˇ

ˇ

` Oph7q.

(4.124)

For p ď 4 it is possible to construct the coefficients an such that LE ´ |τ| ě 0. This
indicates that a fourth-order accurate local truncation error leads to a fourth-order
accurate global error, as expected.

4.2.3.2 Boundary, i “ 1

The analysis is now repeated for the boundary points. At i “ 1 (x1 “ h) the local
error is

τ1 “ c τc
1 ´ ντd

1 “ ´ν
25
12

hûp2q
1 ´ c 2h2ûp2q

1 ` ν
25
12

h2ûp3q
1 ` Oph3q, (4.125)

so we obtain

Lphpψpxqq1 ´ |τ1| “ hp
ˆ

c
27
2

a0 ` ν
677
24h

a0 ` Ophq

˙

´ h
ˇ

ˇ

ˇ

ˇ

´ν
25
12

ûp2q
1 ` Ophq

ˇ

ˇ

ˇ

ˇ

. (4.126)

To make sure that the order of the first term does not exceed the order of the
truncation error (for h Ñ 0), we require p ď 2. For example, in case p “ 2, the
leading order term condition is

h
ˆ

677
24

νa0 ´

ˇ

ˇ

ˇ

ˇ

´ν
25
12

ûp2q
1

ˇ

ˇ

ˇ

ˇ

˙

ě 0. (4.127)

This means that with a sufficiently large positive value of a0 we have a barrier
function that is always larger than |τ| for sufficiently small h. Only the first term of
the polynomial expansion (4.121) is of importance here; increasing the polynomial
order will not change equation (4.127).

4.2.3.3 Boundary, i “ 2

At i “ 2 (x2 “ 2h), we have

τ2 “ c τc
2 ´ ντd

2 “ ν
1
24

hûp2q
2 ´ c

1
2

h2ûp2q
2 ´ ν

1
12

h2ûp3q
2 ` Oph3q, (4.128)
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and we obtain

Lphpψpxqq2 ´ |τ2| “ hp
ˆ

´c a0 ´ ν
13
6h

a0

˙

´ h
ˇ

ˇ

ˇ

ˇ

ν
1
24

ûp2q
2 ` Ophq

ˇ

ˇ

ˇ

ˇ

. (4.129)

This indicates again that the maximum order of the global error is p “ 2 if the
following condition can be fulfilled:

h
ˆ

´
13
6

νa0 ´

ˇ

ˇ

ˇ

ˇ

ν
1
24

ûp2q
2 ` Ophq

ˇ

ˇ

ˇ

ˇ

˙

ě 0. (4.130)

However, this requires a0 ă 0, which contradicts the requirement for i “ 1. For the
current boundary layer problem we can escape from this by noting that τ1 ą 0,
τ2 ă 0 and |τ1| ą |τ2|. This means that the absolute value signs are too restrictive; a
range of positive values of a0 exists for which both (4.127) and (4.130) are satisfied.

Summarizing the results for i “ 1 and i “ 2, we find that no polynomial barrier
function exists with which we can prove a convergence rate higher than 2. We expect that
this result holds for other barrier functions, given that any sufficiently differentiable
function on the domain x P r0, 1s can be expressed as a polynomial. Consequently,
the global error of the fourth order scheme is limited to second order due to boundary condi-
tions.

4.3 numerical experiments

A number of numerical experiments are carried out to support the theoretical res-
ults from sections 4.1 and 4.2. First, we study the order of accuracy of the proposed
boundary conditions for a one-dimensional convection-diffusion equation (section
4.3.1) and a two-dimensional lid-driven cavity (section 4.3.2), and how fourth order
accuracy can be obtained on properly designed non-uniform grids. Secondly, the
energy conservation properties of the new boundary conditions are demonstrated
in section 4.3.4 by considering inviscid flow in a cavity with non-zero tangential
boundary conditions. Lastly, in section 4.3.5 we consider three-dimensional turbu-
lent channel flow for which we show that the new boundary conditions improve
both the velocity and pressure field near the wall, compared to the old conditions.

4.3.1 1D convection-diffusion equation

4.3.1.1 Uniform grid

First we verify the fourth-order scheme by using ‘exact’ boundary conditions, i.e.
we substitute the exact solution (4.95) for the ghost points, like in Veldman [198].
For ν “ 1{100 and h “ 1{200 (|h{ε| “ 1{2) the discrete and exact solution are
shown in figure 4.4a. The global truncation error e “ û ´ u and local truncation
error, obtained from τ “ Le, are shown in figure 4.4b. The leading error term of
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the theoretical local truncation error, equation (4.123), is found by using the exact
solution, equation (4.95):

τi “

ˆ

´
9
5

`
9
40

˙ ˆ

h
ε

˙5 exi{ε

e1{ε ´ 1
, (4.131)

and is also shown in figure 4.4b. Because equation (4.131) contains only the leading
error term, there is a small deviation between the two local truncation errors. The
local truncation error always attains its maximum (in absolute sense) at i “ 1,
because ex{ε is largest here (note ε ă 0). The global error, on the other hand, does
not necessarily attain its maximum value in the first grid point: this depends on
L´1. The structure of L´1 is shown in figure 4.4c; all entries are ě 0, so L is indeed
monotone in this case. It can be seen that L´1 distributes the local error τ over the
entire domain in a particular way. For instance, e1 is influenced by τ in the entire
domain, whereas eN is mainly influenced by τ at the right side of the domain. This
is because the ‘flow’ is convection-dominated and information travels from right to
left (c ă 0).

A plot of }e}8 as a function of h displays clear fourth-order convergence, see
figure 4.4d. The local error }τ}8 shows fifth-order convergence, as expected from
(4.131).

Now we turn to the results for scheme (4.99)-(4.104) where the boundary con-
ditions are chosen such that symmetry properties of the discrete operators are re-
tained. Figure 4.5a shows that the behavior of the local truncation error near the
boundary is much more irregular, as expected. As predicted by equations (4.125)
and (4.128), the convergence of the local error at the boundary is first order for
sufficiently small h. The global error shows second-order convergence, confirming
the barrier function analysis from section 4.2.3. Note that numerical experiments
showed that (at ν “ 1{100) L is monotone for h ă 1{60, approximately.

The ‘kink’ in the global and local error around h “ 10´2 is due to the fact that
the local truncation errors in the convective and diffusive terms almost cancel each
other at i “ 1. This can also be seen from figure 4.5c, which shows that the position
of maximum τ shifts from i “ 1 to i “ 2.

Considering that both theoretical arguments and numerical experiments show
that the fourth-order symmetry-preserving method is only second-order accurate
for boundary layer problems with Dirichlet boundary conditions, one might won-
der if it is useful to apply a fourth-order method anyway. We therefore compare
the results presented above with the second-order method, which does not require
boundary conditions for u´1 and u´2. The global error behavior of the second- and
fourth-order schemes is shown in figure 4.5d. It is observed that for most meshes,
except the very coarse ones, the second-order method is even more accurate than
the fourth-order method. The explanation lies in the fact that in this test case the
largest gradients in the solution are near the boundary, where the local truncation
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Figure 4.4: Solution and error behavior for uniform grid, exact boundary conditions, ν “

1{100.

error has unfavorable properties. On uniform grids with boundary-layer like prob-
lems the fourth-order method is not preferred over the second-order method.

We will continue to study the effect of the boundary conditions and the difference
between the second and fourth order scheme by considering non-uniform grids.
Such grids are more suitable to handle boundary-layer like problems than uniform
grids.

4.3.1.2 Non-uniform grid

In practice, thin boundary layers should be calculated by employing non-uniform
grids. In this section we investigate if the conclusions for uniform grids carry over
to non-uniform grids. We investigate an exponential grid, i.e. a grid where each cell
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Figure 4.5: Error behavior for uniform grid, symmetry-preserving boundary conditions, ν “

1{100.

size is a constant factor times the neighboring grid cell size. The grid is written as a
mapping of a uniform grid,

xpξq “ p1 ´ sξq{p1 ´ sq, (4.132)

where ξ is uniformly distributed over r0, 1s, and s is the stretch factor. The stretch
factor is determined by choosing a refinement region δ such that in both r0, δs and
rδ, 1s N{2 volumes are located. The stretch factor stays constant during mesh refine-
ment. Defining the boundary layer edge as the point where û “ p ûp1q, we find for
sufficiently small ε:

δp “ ε lnp1 ´ pq. (4.133)

For example, if the boundary layer edge is defined at the point where û “ 0.9,
then δ0.9 « 2.3 ¨ 10´2 (ε “ ´1{100). Looking at the convergence and position of
the local and global error for δ0.9 (figures 4.6a and 4.6b) it can be seen that the
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refinement region can make sure that the position of maximum global error is not
at the boundary; upξq does not have its largest gradient at the boundary. However, for
sufficiently small h the global error moves to the boundary, and the slope changes
to second order (h « 10´2), like in the uniform case. The position of the kink, hk, is
mainly determined by δ: the smaller δ, the smaller the value of hk. If the refinement
zone is chosen properly, the error will exhibit a region of fourth order convergence.
For these non-uniform grids, the fourth-order scheme is more accurate than its
second-order counterpart.
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Figure 4.6: Error behavior for non-uniform grid, ν “ 1{100.

An important question that remains is: can we design the mesh such that the global
error keeps its fourth order behavior upon mesh refinement? We concluded in section 4.2
that the local truncation error near boundaries is Op1q, resulting in a global error of
Oph2q. If we construct the mesh near the boundary such that hbnd “ Oph2q (where
h “ 1{N), then one might expect heuristically a contribution to the global error of
Oph4q. Such a mesh can be constructed by making the stretch factor h-dependent.
The smallest finite volume is given by (equation (4.132)):

h1 “
1 ´ sh

1 ´ s
“ ´

lnpsq

1 ´ s
h ` Oph2q. (4.134)

With s „ 1{h we obtain h1 “ Oph2q. In figure 4.7 we show the convergence of the
global error for the case s “ 10{h. It is clearly seen that the error now converges with
Oph4q, for all mesh sizes. The fourth order method is now much more accurate than
the second order method.

To summarize, the fourth order scheme attains fourth order convergence on prop-
erly chosen non-uniform meshes. These meshes should be designed such that the
global error is not at the boundary but in the interior of the domain: the smallest
cells near the boundary should scale with Oph2q upon mesh refinement. Further-
more, the mesh should be ‘smooth’ enough to exhibit fourth order behavior. Recall-
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Figure 4.7: Error behavior for non-uniform grid, s “ 10{h.

ing that the relation between the derivative on a uniform and non-uniform grid is
given by

du
dx

“
du
dξ

{
dx
dξ

, (4.135)

we observe that an Oph4q approximation for both du
dξ and dx

dξ is required. For ex-
ample, Shishkin meshes (see e.g. [207, 198]), which consist of two uniform meshes
with a different mesh width, lack this smoothness and fourth order accuracy is not
obtained, not even when the point of maximum error is in the interior.

4.3.2 Lid-driven cavity

We continue the study of the order behavior of the fourth-order scheme by study-
ing the steady lid-driven cavity flow at a Reynolds number of 1000. In this bench-
mark problem [18] for the incompressible Navier-Stokes equations we introduce
two major differences with the 1D convection-diffusion equation: (i) the Navier-
Stokes equations are non-linear, (ii) the Navier-Stokes equations include a pressure
term to satisfy the incompressibility constraint. To obtain steady solutions the full
non-linear system of equations is solved with Newton linearization of the convect-
ive term. The resulting saddle-point matrix problem is solved with a direct solver.
The iterative procedure is stopped when the residual (in the maximum norm) drops
below 10´8, which requires approximately 6 iterations.

Similar to the one-dimensional boundary layer study, we have investigated both
uniform and non-uniform exponential grids. The exponential grids are given by
(4.132), with a stretching factor equal to the effective stretching factor of the cosine
grid used by [18]:

s “
2

πh
. (4.136)

The number of grid points ranges from 8 ˆ 8 to 128 ˆ 128.
Figures 4.9 and 4.10 show some examples of solution profiles through the center-

lines of the cavity, compared to the benchmark data of Botella and Peyret [18] (in
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the figures abbreviated as BP). The pressure is determined up to a constant, which
has been chosen such that p “ 0 in the center of the cavity. It can be seen that the
pressure converges to the correct values at the boundary, and that the boundary
condition for the pressure is certainly not Bp{Bn “ 0. Note that the boundary condi-
tions used by VV lead to a (numerical) boundary layer in the pressure, as shown in
figures 4.11a-4.11b. The velocity profiles along the centerlines are used to perform a
quantitative comparison of the second and fourth order discretization on both the
uniform and exponential grid. In order to measure the order of accuracy we com-
pare the minimum value of u along x “ 0.5 and maximum and minimum values
of v along y “ 0.5 with the benchmark data. The resulting error plots are shown in
figure 4.8. The non-uniform grids are better able to capture the boundary layers and
therefore lead to more accurate prediction of the minimum and maximum velocity
values along the centerline. Comparing the second and fourth order results on the
uniform grid, figure 4.8a, we conclude that the fourth order method has a somewhat
smaller error than the second order method, but converges only with second order
upon grid refinement. This is in agreement with the error analysis from section 4.2
and the 1D results from section 4.3.1 - in particular figure 4.5d.

On non-uniform grids we expect better convergence properties since the expo-
nential grid satisfies h1 “ Oph2q. Indeed, fourth order convergence of umax and vmax
is shown in figure 4.8b. The convergence order of vmin is apparently lower; this can
possibly be improved by adapting (4.136). Since this is problem specific we do not
investigate this in detail here.
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Figure 4.8: Errors in velocity profiles.
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Figure 4.9: Velocity profiles upyq at x “ 0.5, 2nd and 4th order method on an exponential
grid.
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Figure 4.10: Pressure profiles ppxq at y “ 0.5, 2nd and 4th order method on an exponential
grid.
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Figure 4.11: Pressure profiles ppxq at y “ 0.5 with 4th order method and old boundary con-
ditions. Compare with figure 4.10b.
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4.3.3 Taylor-Green vortex

We repeat the Taylor-Green test case from section 3.3.1, but now with time-depend-
ent Dirichlet conditions. Figure 4.12 shows the spatial error in the velocity as func-
tion of mesh size for both the second and fourth order method. The second order
method converges with second order accuracy, as for the case of periodic bound-
ary conditions, but the convergence of the fourth order method is also only second
order. This confirms the results from sections 4.3.1 and 4.3.2: the accuracy of the
fourth order method drops to second order on uniform meshes when boundaries
are present.
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Figure 4.12: Convergence of spatial error with unsteady Dirichlet boundary conditions.

4.3.4 Energy conservation in an inviscid cavity

In this section we will show that the newly proposed boundary conditions for the
fourth order method exactly conserve energy in case of no-penetration conditions.
Desjardins et al. [42] considered a two-dimensional inviscid channel flow with peri-
odic boundary conditions in one direction and no-slip conditions in the other. We
increase the difficulty of their test case by prescribing non-zero tangential conditions
on all boundaries, resulting in an ‘inviscid cavity’:

upx, 0, tq “ ´1, upx, 1, tq “ 16x2p1 ´ xq2, (4.137)

vp0, y, tq “ 1, vp1, y, tq “ ´1. (4.138)

See figure 4.13a. The velocity field is discontinuous in the corners. Furthermore, in
contrast to [42], we use the implicit midpoint method for time integration instead
of the Crank-Nicolson method, since the latter is not truly energy-conserving (this
will be discussed in chapter 7).

The non-uniform grid that we have used consists of 20 ˆ 20 volumes and is shown
in figure 4.13b. In x-direction the stretch factor (ratio between largest and smallest
volume) is 2, in y-direction it is 10. The initial velocity field consists of uniform
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random numbers between ´1 and 1 and is made divergence-free by a projection
step involving the solution of a Poisson equation. This velocity field is subsequently
advanced in time from t “ 0 to t “ 1 with ∆t “ 1{100. In figure 4.14 we show the
relative error in kinetic energy,

ek “
Kptq ´ Kpt “ 0q

Kpt “ 0q
, (4.139)

for both the new and old boundary condition treatment. With the new boundary
conditions the energy error stays at machine precision (Op10´14q), whereas the en-
ergy grows in time with the old boundary conditions.

v “ 1 v “ ´1

u “ ´1

u “ 16x2p1 ´ x2q

(a) Boundary conditions
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Figure 4.13: Inviscid cavity.
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Figure 4.14: Energy evolution in inviscid cavity as a function of time.
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4.3.5 Turbulent channel flow

In this section4, the two discrete boundary conditions given by (4.79) and (4.80)
are compared for a turbulent channel flow. This flow can be seen as a prototype
for near-wall turbulence. The Reynolds number in our simulation is based on the
channel width and the bulk velocity. It is set equal to Re “ 22, 000; in terms of the
channel half width and the friction velocity the Reynolds number becomes approx-
imately Reτ “ 590. Moser et al. [118] have performed a direct numerical simulation
(DNS) of this channel flow. Their DNS data is often used to evaluate the accur-
acy of large eddy simulations (LES) of near-wall turbulence. The DNS was done
on a 384 ˆ 257 ˆ 384 grid; large eddy simulations typically use about 643 points,
i.e., they have about 144 times less points. The present test considers an LES with
a subgrid model that is based on the two non-zero invariants of the rate of strain
tensor, see [201]. As usual the flow is assumed to be periodic in the stream- and
spanwise direction. Consequently, the computational domain may be confined to a
channel unit. The dimension of the considered unit is taken identical to that of the
DNS. The LES uses 64 uniformly distributed streamwise points and 32 (uniformly
distributed) spanwise points. In the lower half of the channel, the wall-normal grid
points are computed according to

yj “
sinh

`

γj{Ny
˘

2 sinh pγ{2q
with j “ 0, 1, ..., Ny{2, (4.140)

where Ny denotes the number of grid points in the wall-normal direction. The
stretching parameter γ is taken equal to 8. The grid points in the upper half are
computed by means of symmetry. The time step is set equal to ∆t “ 10´3 (non-
dimensionalized by the bulk velocity and the channel width). Mean values of the
velocity are computed by averaging the instantaneous velocity over the directions
of periodicity, the two symmetrical halves of the channel, and over time. The aver-
aging over time starts after a start-up period of 90,000 time steps. The averaging is
performed over 90,000 time steps too. Figure 4.15 shows a comparison of the two
mean velocity profiles as obtained from our LES with the fourth-order symmetry-
preserving discretization method, where we have applied the boundary treatment
given by equations (4.80) as well as that given by equations (4.79). The difference
between the resulting wall shear stresses is about 10%. Equations (4.80) result into
τw “ 2.9 ¨ 10´3, which is in excellent agreement with the DNS of Moser et al.,
whereas equations (4.79) lead to τw “ 3.2 ¨ 10´3, which is too high. All results
shown in figure 4.15 are scaled with the help of τw “ 2.9 ¨ 10´3. As can be seen, the
main differences between the two wall treatments are located in the region near the
wall. The differences are very small away from the wall (for y` ą 20), whereas near
the wall substantial differences, up to 10%, can be observed.

Figure 4.16 illustrates the differences between the resulting pressures. Away from
the boundary (y` “ 0) the two pressures profiles differ by a constant (approxim-

4 This section has been contributed by R. Verstappen (University of Groningen).
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ately). Such a difference by a constant is not relevant, since the pressure gradients
are (almost) the same. Near the boundary (0 ă y` ă 20), on the other hand, the
pressure profiles are different in the first few (4) grid points counted from the wall.
The old boundary treatment described by equations (4.79) results into a thin - nu-
merical - boundary layer: the pressure is solved from a Poisson equation that is
effectively supplied with Dirichlet conditions. The new boundary treatment, which
effectively imposes a Neumann condition, leads to the proper boundary behavior
of the pressure near the wall.

In conclusion, the boundary treatment given by (4.80) yields better results for
both velocity and pressure in the boundary layer of a turbulent channel flow.
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Figure 4.15: Comparison of the mean streamwise velocity u` as a function of y`.
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4.4 conclusions

Symmetry-preserving or energy-conserving discretization methods have become
popular methods for simulating turbulent flows governed by the incompressible
Navier-Stokes equations. In this chapter we have proposed a new consistent bound-
ary treatment for the symmetry-preserving discretization method described in [203].
The new boundary conditions are such that continuous integral identities (express-
ing conservation of mass, momentum and kinetic energy) are mimicked in a discrete
sense, including the contributions from the boundaries. To derive this boundary
treatment, we have used a new technique in which the ‘implied’ discretization of
boundary volumes is derived based on global conservation of momentum. Upon
requiring conservation of energy it turns out that the ghost values of the normal
velocity component at a boundary should be set according to a usual Dirichlet con-
dition, whereas the ghost values of the tangential velocity component at a bound-
ary should be set according to a Neumann type condition. With these boundary
conditions the convective operator is also energy-conserving if non-zero tangen-
tial boundary conditions are prescribed. The newly derived boundary conditions
furthermore imply the correct boundary conditions for the pressure.

The use of these conditions limits the global order of accuracy of the fourth order
discretization method to second order on uniform grids, because the requirements
which (skew-)symmetry pose on the coefficients of the matrices are not compatible
with the requirements resulting from Taylor expansions to reach higher order ac-
curacy. We have shown that by using properly refined non-uniform grids near the
boundary, high-order accuracy of the global error can still be obtained.

The improved boundary conditions are important for wind-turbine wake simu-
lations. No-slip boundary conditions appear at the Earth’s surface, leading to an
atmospheric boundary layer in which wind turbines operate. Combining the new
boundary conditions with proper grid refinement makes the fourth order method
ready to be used for wind-turbine wake aerodynamics.



Part II

TEMPORAL DISCRETIZATION

This part describes the application of Runge-Kutta methods for time in-
tegration of the semi-discrete incompressible Navier-Stokes equations.
Firstly, new explicit methods that lead to higher-order temporally accur-
ate velocity and pressure approximations are proposed. Secondly, im-
plicit methods that are energy-conserving in the inviscid limit are de-
veloped.





5RUNGE-KUTTA METHODS FOR THE INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS

5.1 introduction

In this part of the thesis we discuss the application of Runge-Kutta methods to
the time discretization of the incompressible Navier-Stokes equations. Runge-Kutta
methods can combine good stability properties with high order, do not have a start-
up problem, and easily allow for adaptive time stepping. The main reason for study-
ing Runge-Kutta methods in this thesis is because they can be constructed such that
they conserve energy, and as such extend the energy-conserving property of the
spatial discretization when marching in time. However, as we will see, such meth-
ods are necessarily implicit and therefore relatively expensive. As an alternative, we
will therefore also consider explicit Runge-Kutta methods.

The application of (both explicit and implicit) Runge-Kutta methods to the incom-
pressible Navier-Stokes equations is not straightforward because of the differential-
algebraic nature of the equations, caused by the divergence-free constraint. It is
common practice to advance the velocity at each stage as if the discretized equa-
tions are a system of ordinary differential equations, and subsequently solve a Pois-
son equation for the pressure to make the velocity field divergence-free. However,
it is not clear if and how this approach influences the temporal order of accur-
acy of the velocity and pressure. The accuracy of the velocity is often silently as-
sumed to be unaffected by the differential-algebraic nature of the incompressible
Navier-Stokes equations, and the temporal accuracy of the pressure is often not
reported. A temporally accurate pressure is however of interest in many flow sim-
ulations, such as those involving unsteady lift and drag computations (forces on
wind-turbine blades), or fluid-structure interactions. We will analyze the accuracy
of both velocity and pressure by applying the convergence theory developed for
index 2 differential-algebraic equations [60, 63] to the incompressible Navier-Stokes
equations.

The outline of this part of the thesis is as follows. First, in section 5.2 we consider
the incompressible Navier-Stokes equations as a system of differential-algebraic
equations, for which we write down the Runge-Kutta method in section 5.3. In
chapter 6 we focus on explicit Runge-Kutta methods, and in chapter 7 on implicit
(energy-conserving) Runge-Kutta methods.

5.2 differential-algebraic equations

The semi-discrete equations (3.1)-(3.2) obtained after spatial discretization form a
non-autonomous differential-algebraic equation (DAE) system of index 2 (see e.g.

77
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[60, 63, 8]), where u plays the role of the differential variable, and p the role of the
algebraic variable. Following the literature on DAEs, they can be written as

0 “ gpu, tq, (5.1)
9u “ f pu, p, tq, (5.2)

where

gpu, tq “ Mu ´ r1ptq, (5.3)

f pu, p, tq “ Fpu, tq ´ Gp, (5.4)

with Fpu, tq “ ´Cpuq ` νDu ` r2pu, tq. Ω´1 has been absorbed in the definition
of C, D, G and r2. The explicit presence of unsteady boundary conditions for the
divergence equation, r1ptq, is often omitted in literature, but it will be shown to be
important when discussing explicit Runge-Kutta methods. An example of a nonzero
r1ptq is a time-varying inflow condition such as a turbulent inflow field. We assume
that

L “ ´gupu, tq fppu, p, tq is non-singular, (5.5)

so that the problem is indeed of index 2 [63, 8]. For the incompressible Navier-
Stokes equations

L “ MG (5.6)

is recognized as the Laplacian operator (independent of u and p), which is actually
singular in case of Dirichlet or periodic conditions for the velocity on the entire
boundary. A possible remedy against the singular nature is to impose an addi-
tional constraint (e.g. setting the average pressure value by replacing one row of
the Laplace matrix by ones). An instantaneous equation for the algebraic variable,
the pressure, is found by differentiating the divergence-free constraint in time and
substituting the momentum equation:

Lp “ MFpu, tq ´ 9r1ptq, (5.7)

where we have used that M is not depending on t. Upon differentiation in time once
more one obtains an ODE for the pressure; the index of the DAE is therefore 2 (the
index is the number of differentiations necessary to obtain an ODE). We note that
this equation can be derived similarly if M, G and other operators depend on time,
as in the case of time-varying meshes; an additional term 9Mptqu will appear on the
right-hand side. The pressure can be eliminated from the system of equations, by
solving equation (5.7) and inserting it into (5.2):

9u “ PFpu, tq ` GL´1 9r1ptq, (5.8)

where the projection operator P, defined by

P “ I ´ GL´1M, (5.9)
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is a square matrix that projects velocity fields on the space of divergence-free fields;
the divergence of this projection is zero (MP “ 0). However, when discretizing in
time one should not start with equation (5.8). The differentiation of the constraint,
necessary to arrive at (5.8), has lowered the index of the DAE system, and upon dis-
cretization its solutions do not necessarily satisfy the constraint (5.1). It is therefore
desirable to use the original DAE system (5.1)-(5.2) (the one with highest index),
because its solutions will satisfy all the derived lower index systems [59].

The initial conditions at t “ t0 should be consistent with equations (5.1)-(5.2) and
(5.7):

Mu0 “ r1pt0q, (5.10)

Lp0 “ MFpu0, t0q ´ 9r1pt0q. (5.11)

Equation (5.11) expresses that the initial pressure cannot be chosen freely, but has
to be calculated based on u0.

5.3 runge-kutta methods

5.3.1 General formulation

The solution to the semi-discrete equations will be approximated by the fully dis-
crete solution un, pn by means of a Runge-Kutta method. A general Runge-Kutta
method applied to the index 2 DAE (5.1)-(5.2) reads [63, 149]:

Ui “ un ` ∆t
s

ÿ

j“1

aijpFj ´ Gψjq, MUi “ r1ptiq, (5.12)

un`1 “ un ` ∆t
s

ÿ

i“1

bipFi ´ Gψn`1q, Mun`1 “ r1ptn`1q, (5.13)

with ti “ tn ` ci∆t and s is the number of stages. Here Ui and un are approximations
to the exact values uptiq and uptnq, respectively, and Fj “ FpUj, tjq. The pressure-like
variable ψ is introduced to explicitly distinguish it from p, since ψ generally does
not satisfy (5.7).

The ‘classical’ order of the method (when applied to non-stiff ODEs) is called p
(from the context confusion with the pressure will be avoided). The set of coeffi-
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cients aij, bi and ci will be denoted collectively by A and can be written in compact
form using a Butcher tableau:

c1 a11 a12 . . . a1s

c2 a21 a22 . . .
...

...
...

...
. . .

...

cs as1 . . . . . . ass

b1 . . . . . . bs

(5.14)

with the convention

ci “

s
ÿ

j“1

aij, (5.15)

not to be confused with the convecting velocity in (3.2). The following so-called
‘simplifying conditions’ will be used in studying order conditions for Runge-Kutta
methods [24]:

Bppq :
s

ÿ

i“1

bic
q´1
i “

1
q

, q “ 1, . . . , p; (5.16)

Cpηq :
s

ÿ

j“1

aijc
q´1
j “

cq
i
q

, i “ 1, . . . , s, q “ 1, . . . , η; (5.17)

Dpζq :
s

ÿ

i“1

bic
q´1
i aij “

bj

q
p1 ´ cq

j q, j “ 1, . . . , s, q “ 1, . . . , ζ. (5.18)

The first condition relates to the fact that the last step of the Runge-Kutta method
can be seen as a quadrature method with abscissas ci and weights bi; Bppq indicates
that the quadrature method is exact for polynomials of degree ď p ´ 1. Similarly, the
second condition Cpηq indicates the minimum order of quadrature of all the stages
of the Runge-Kutta method; sometimes we will use Cipηq to indicate the quadrature
order of stage i. If Cipηq holds then polynomials of degree lower than q are exactly
interpolated at stage i. Cip1q is equivalent to condition (5.15).

5.3.2 Playing with the pressure

Now that the Runge-Kutta method has been applied, one can obtain a more com-
pact formulation by eliminating the pressure:

Ui “ un ` ∆t
s

ÿ

j“1

aijPFj ` GL´1pr1ptiq ´ r1ptnqq, i “ 1, . . . , s. (5.19)
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Since MP “ 0, equation (5.19) satisfies MUi “ r1ptiq at all intermediate stages.
When first eliminating the pressure, and then applying the Runge-Kutta method,
the last term in (5.19) would change to GL´1 ř

j aij 9r1ptjq, and the constraint is only
satisfied if 9r1ptq “ 0 (so both formulations are equal in the case of steady boundary
conditions). The velocity at the new time step follows as:

un`1 “ un ` ∆t
s

ÿ

i“1

biPFi ` GL´1pr1ptn`1q ´ r1ptnqq. (5.20)

The presence of the inverse of the Laplace operator (in the two last terms) makes
the computation of Ui unattractive from a practical point of view. Therefore we
rewrite equation (5.19) back into a two-step formulation by introducing a variable
which ‘looks’ like the pressure p. First we substitute P “ I ´ GL´1M in (5.19),
leading to

Ui “ un ` ∆t
i

ÿ

j“1

aijFj ´ GL´1

¨

˝∆t
i

ÿ

j“1

aij MFj ´ pr1ptiq ´ r1ptnqq

˛

‚. (5.21)

Comparing with the ‘exact’ equation for the pressure at each stage,

Lpi “ MFi ´ 9r1ptiq, (5.22)

it seems natural to introduce a pressure-like variable, ϕ, and the c coefficients and
rewrite (5.21) as the following two steps:

Ui “ un ` ∆t
i

ÿ

j“1

aijFj ´ ci∆tGϕi, (5.23)

with ϕi defined by

Lϕi “

i
ÿ

j“1

1
ci

aij MFj ´
r1ptiq ´ r1ptnq

ci∆t
. (5.24)

Equation (5.24) is simply the divergence of (5.23) supplemented with the additional
information MUi “ r1ptiq. Each ϕi is a Lagrange multiplier to make Ui divergence
free and each Ui is independent of the value of ϕj for j ‰ i; this is the advantage
of using ϕ instead of ψ. It should be stressed that the presence of the c coefficients
in the pressure term is not necessary to obtain the correct velocity field. The reason
to introduce the c coefficients is that for explicit methods it yields a ϕi which is a
consistent approximation to p̃i. In case of implicit methods (e.g. methods based on
Radau or Lobatto quadrature) it is possible to have a non-trivial first stage (a1j ‰ 0)
with c1 “ 0 and then the c-coefficients should not be introduced. The most general
approach is then to define a pressure-like variable ρip“ ciϕiq and not introduce the
c coefficients at all. As will be seen in sections 6.3 and 7.6, this does not complicate
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obtaining high-order accurate pressure estimates, because the combination ciϕi “ ρi
also occurs in that context. These ρi values are still Lagrange multipliers whose
value is independent of previous time steps, and consequently the velocity field
remains independent of the history of the pressure. On the other hand, this is no
longer true when the solution of velocity and pressure is decoupled, for instance
by employing a pressure correction method, see e.g. [194, 5, 87]. In that case the
c coefficients appear in the pressure term of the initial velocity estimate and both
velocity and pressure depend on pressure values from previous time steps.

When comparing equation (5.24) to equation (5.22), the first term on the right
side of (5.24) is recognized as an approximation to MFi and the second term as
an approximation to 9r1ptiq. The second term is clearly a first-order approximation,
since

9r1ptiq “
r1ptiq ´ r1ptnq

ci∆t
` Op∆tq. (5.25)

The first term is also a first-order approximation, which we show by following an
argument employed in [129, 130]. Fi in (5.22) is F evaluated at pUi, tiq, whereas
ři

j“1
1
ci

aijFj is an approximation to the average value of F from tn to ti. Assuming
that F is continuous over the interval rtn, tis, this average equals the value of F at
some point t̂ P rtn, tis (according to the integral version of the mean value theorem)
and as such is an Op∆tq approximation to Fi:

MFi “

i
ÿ

j“1

1
ci

aij MFj ` Op∆tq. (5.26)

As a consequence the Lagrange multiplier ϕ is a first-order approximation to the
pressure p:

ϕi “ pi ` Op∆tq. (5.27)

Of course, by virtue of the midpoint method, ϕi is a second-order approximation
to the pressure at tn ` 1

2 ci∆t, as long as the stage order of the method is at least 2

(this will be detailed in section 6.3). We will call the approach, where one uses ϕs
as approximation to pn`1, the ‘standard’ approach. The first-order accuracy of this
approach is independent of the particular coefficients of the Runge-Kutta method.
It results from the fact that (5.12) contains an approximation to the integral

ş

Fdt,
whereas (5.24) contains F evaluated at a certain time instance. This is because the
pressure has an instantaneous character: its value is such that the velocity field is
divergence free at each time instant, and is independent of the pressure at any pre-
vious time. The equation for the velocity is, on the contrary, an evolution equation.

An alternative formulation of equations (5.23) and (5.24) that can avoid the first-
order behavior of the pressure is as follows. Instead of taking a single pressure-like
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variable at each stage, we take a combination by introducing a Butcher tableau Ap

for the pressure term such that:

Ui “ un ` ∆t
i

ÿ

j“1

aijFj ´ ∆t
i

ÿ

j“1

ap
ijGψj, (5.28)

with
i

ÿ

j“1

ap
ijLψj “

i
ÿ

j“1

aij MFj ´
r1ptiq ´ r1ptnq

∆t
. (5.29)

Ap is, like A, lower triangular and should have ap
i,i ‰ 0 in order to guarantee a

unique ψ at each stage. Equations (5.24) and (5.29) are related by

ψ “ pApq´1diagpc1, . . . , csqϕ. (5.30)

One can therefore obtain ψ from ϕ, as long as Ap is invertible. For the choice

Ap “ diagpc1, . . . , csq, (5.31)

we obtain formulation (5.23)-(5.24) with ψ “ ϕ, and the accuracy of the pressure is
limited to first order. A possible way to obtain a higher order pressure is to choose
Ap “ A (so that there is just a single Butcher tableau). This is simply the original
formulation (5.12)-(5.19), of which the accuracy can be evaluated with the theory of
Hairer et al. [60, 63].





6EXPLICIT RUNGE-KUTTA METHODS

adapted
from [149]Because the treatment of incompressible flow is so unforgiving of imprecise

ideas, such flows still remain a fertile ground. [59]

In this chapter we discuss explicit Runge-Kutta methods. In section 6.1 we re-
write the general Runge-Kutta method in terms of the shifted Butcher tableau.
Subsequently, in section 6.2 we investigate the order conditions for velocity and
pressure, and in section 6.3 we propose different methods to compute a high-order
accurate pressure. In section 6.4 we show the results of two test cases which confirm
our theoretical findings.

6.1 introduction

A simpler representation for explicit methods is obtained by introducing the shifted
matrix Ã and vector c̃:

Ã “

¨

˚

˚

˚

˚

˚

˝

a21 0 . . . 0
...

. . . . . .
...

as1 . . . as,s´1 0

b1 . . . bs´1 bs

˛

‹

‹

‹

‹

‹

‚

, c̃ “

¨

˚

˚

˚

˚

˚

˝

c̃1
...

c̃s´1

c̃s

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

c2
...

cs

1

˛

‹

‹

‹

‹

‹

‚

, (6.1)

and the shifted vectors

Ũ “

¨

˚

˚

˚

˚

˚

˝

Ũ1
...

Ũs´1

Ũs

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

U2
...

Us

un`1

˛

‹

‹

‹

‹

‹

‚

, p̃ “

¨

˚

˚

˚

˚

˚

˝

p̃1
...

p̃s´1

p̃s

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

p2
...

ps

pn`1

˛

‹

‹

‹

‹

‹

‚

, (6.2)

so that equations (5.12) and (5.13) can be written as

Ũi “ un ` ∆t
i

ÿ

j“1

ãijPFj ` GL´1pr1pt̃iq ´ r1ptnqq, (6.3)

with t̃i “ tn ` ∆t c̃i.

85
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The solution algorithm that we use in practice is obtained by writing (6.3) as:

Ṽi “ un ` ∆t
i

ÿ

j“1

ãijFj, (6.4)

Lϕ̃i “
1

c̃i∆t
pMṼi ´ r1pt̃iqq, (6.5)

Ũi “ Ṽi ´ c̃i∆tGϕ̃i, i “ 1, 2 . . . s, (6.6)

optionally followed by equation (5.30). This sequence of first computing a tentative
velocity, then the pressure, and finally correcting the tentative velocity is similar
to fractional step methods (see e.g. [129]). However, in fractional step methods the
diffusive and/or convective terms are taken implicitly, and a splitting error results
from uncoupling the solution of velocity and pressure. Here all terms are handled
explicitly (except the pressure) and consequently there is no splitting error involved.
It is therefore unnecessary to solve a coupled system for Ũi and ϕ̃i, as is done for
example in Pereira et al. [125]. Hairer et al. [60] call these methods half-explicit:
the differential variable is advanced with an explicit method (equations (6.4) and
(6.6)) while the algebraic variable is handled implicitly (equation (6.5)). The implicit
equation for the pressure has to be solved at each stage, resulting in s Poisson
equations. The resulting Ũs “ un`1 and ϕ̃s “ ϕn`1 (or ψ̃s) are approximations to
uptn`1q and pptn`1q. The order of accuracy of ψ̃s and Ũs will be considered next.

6.2 order conditions

6.2.1 Local and global error

For general index 2 DAEs of the form (5.1)-(5.2) the classical order conditions (‘clas-
sical’ referring to non-stiff ODEs, see e.g. [25]) for the coefficients of the Butcher
tableau are not sufficient to guarantee the correct order of accuracy for both the
differential and algebraic variable. The work of Hairer et al. [60] and Hairer and
Wanner [63] provides local and global error analyses for index 2 DAEs and identi-
fies in which cases order reduction can occur. We focus on the local error, because for
half-explicit methods the error propagation from local to global error is the same
as for non-stiff ODEs. For the velocity (the differential variable) this is expressed by
the following theorem:

Theorem 6.2.1. Convergence - Brasey and Hairer [20]. Suppose that (5.5) holds in a neigh-
borhood of the solution puptq, pptqq of equations (5.1)-(5.2) and that the initial values satisfy
(5.10)-(5.11). If the coefficients of the half-explicit Runge-Kutta method (6.4)-(6.6) satisfy
ãp

i,i ‰ 0 and if the local error satisfies

δuptq “ Op∆tr`1q, (6.7)
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then the method is convergent of order r, i.e.,

un ´ uptnq “ Op∆trq for tn ´ t0 “ n∆t ď T, (6.8)

with T finite.

The pressure-like variable ψ̃i (including ψ̃s “ ψn`1) is independent of ψn and the
order of accuracy of the global error in ψ is therefore given by the order of accuracy
of the local error δψptq, provided that δuptq has at least the same order [60]. The
focus of the rest of this section is therefore on the local error of both the u- and
p-component.

6.2.2 A short introduction to trees

For Runge-Kutta methods applied to ODEs of the form 9u “ f puq, the local error
can be investigated by expanding both the exact and numerical solution in a Taylor
series and comparing until which order they agree. This requires that :u, ;u, etc. are
written in terms of f and its derivatives:

9u “ f , :u “ fu f , ;u “ fu fu f ` fuup f , f q. (6.9)

Since f and u are vectors, the first derivatives in this expression should be inter-
preted as Jacobian matrices, the second derivatives as bilinear maps, and p f , f q as
a tensor product. The number of elementary differentials that appear in this pro-
cess grows rapidly when high orders are compared. With each differential there is
an associated order condition. An efficient way to handle the order conditions for
ODEs was introduced by Butcher with the concept of rooted trees [25, 23]. Given a
certain tree the elementary differential and the order condition corresponding to it
can be easily written down. For example, (6.9) becomes in terms of trees

9u “ :u “ ;u “ ` (6.10)

The order conditions for these trees are (in order of appearance):

ÿ

bi “ 1,
ÿ

bici “
1
2

,
ÿ

biaijcj “
1
6

,
ÿ

bic2
i “

1
3

. (6.11)

In all cases, the summation is over all indices present in the summand.
The extension of the analysis with trees to DAEs was done by Hairer et al. [60]

and will be used here. Hairer et al. [60] consider the autonomous index 2 DAE

0 “ gpuq, (6.12)
9u “ f pu, pq. (6.13)
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The non-autonomous system (5.1)-(5.2) can be written in this form by adding 9t “ 1

so that equations (6.12)-(6.13) hold by redefining u :“

˜

u

t

¸

and f :“

˜

f

1

¸

. In the

Taylor expansion of the exact and numerical solution, 9p, :p, . . . appear next to 9u, :u,
. . .. The first few derivatives read (see [60, 63]):

9u “ f , (6.14)

9p “ p´gu fpq´1pguup f , f q ` gu fu f q, (6.15)

:u “ fu f ` fpp´gu fpq´1pguup f , f q ` gu fu f q. (6.16)

For DAEs, the number of differentials grows even more rapidly for higher order
derivatives. Trees still provide a compact way to represent these derivatives, when
extended to contain both meagre (solid) and fat (open) vertices:

9u “ 9p “ ` :u “ ` ` (6.17)

The order of a tree is the number of meagre vertices minus the number of fat vertices
[60]. To have a local error of Op∆tr`1q (global error Op∆trq) the order conditions
should be satisfied up to and including tree order r. (An exception is the case where
a differential corresponding to a tree is of the form fp ¨ p. . .q. The corresponding
order condition then has to be considered for order r ` 1 instead of r [60].) These
order conditions can be read again from the trees, as is outlined in Hairer et al.
[60] and Brasey and Hairer [20]. As an example, the above trees correspond to the
following order conditions:

9u :
ÿ

bi “ 1, (6.18)

9p :
ÿ

biωijωjkc2
k “ 2,

ÿ

biωijωjkaklcl “ 1, (6.19)

:u :
ÿ

bici “
1
2

,
ÿ

biωijc2
j “ 1,

ÿ

biωijajkck “
1
2

, (6.20)

the summation being again over all indices. In this example we see that next to
the classical order conditions (represented by trees with only meagre vertices) ad-
ditional order conditions appear, corresponding to trees with fat vertices, which
include the inverse of matrix A (ωij denotes the entries of A´1). The order con-
ditions for the p-component are especially difficult due to the presence of pA´1q2.
Fortunately, some of these additional trees do not pose additional constraints on
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the coefficients because they reduce to classical order conditions. For example, the
last condition in equation (6.20) can be written as

ÿ

biωijajkck “ bT A´1 Ac “
ÿ

bici “
1
2

, (6.21)

so it reduces to the classical second-order condition. The additional order conditions
that cannot be simplified to classical order conditions are of interest to us. To find
these remaining conditions we used the software described in [30]. We found that
for the u-component there is no additional tree for order 1, but there is 1 for order
2, there are 4 for order 3 and 17 for order 4. For the p-component there are 2 trees
for order 1, 6 for order 2, 21 for order 3, and 81 for order 4.

This large number of additional order conditions can still be considerably re-
duced when taking into account two important facts, namely that (i) we are con-
sidering half-explicit methods and (ii) we are applying these to the Navier-Stokes
equations.

6.2.3 Application to the incompressible Navier-Stokes equations

For the Navier-Stokes equations we know that f pu, p, tq “ Fpu, tq ´ Gp, which means
that fp “ G is a constant matrix and thus all derivatives of fp, such as fpu, fpp, etc.,
are zero. Therefore trees which have a meagre vertex as root or as branch and
connected to it a fat vertex and at least one other meagre or fat vertex need not be
considered. In case G is a function of time, one cannot remove trees with derivatives
of the form fpu, fpuu, but only those of the form fpp, fppp, etc.; we will treat this in
section 6.2.5.

We note that in the case of non-autonomous systems, guu in equations (6.15)
and (6.16) consists of guu, gut and gtt. guu and gut are zero for the Navier-Stokes
equations, but gtt “ :r1ptq is in general not, and therefore trees that have a fat vertex
with more than one meagre vertex connected to it do not vanish. This also covers
the case of a time-dependent M matrix. The special case of 9r1ptq “ 0, so that gtt “ 0,
will be discussed in section 6.3.3.

6.2.4 Half-explicit methods

For half-explicit methods the construction of the order conditions changes slightly:
if a meagre vertex follows a fat vertex then the index changes from ajk to ãjk (or
from cj to c̃j). The trees and order conditions that result with this notation, and
after removing all trees containing a derivative of fp, are shown in tables 6.1 and
6.2. Contrary to the u-component, the order of accuracy of the global error of the
p-component is equal to the order of the tree plus 1, because there is no power lost
when going from local error to global error.

Table 6.1 shows that for the u-component up to and including order 4 only 3 trees
with associated additional order conditions remain. The ‘shift’ in order indicated by
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an arrow r Ñ r ` 1 is due to the form fp ¨ p. . .q of the remaining trees, as was men-
tioned before. The order conditions corresponding to these trees can be simplified
for the explicit methods under consideration. Considering that b is the last row of
Ã, we can write

bT “

´

0 0 . . . 1
¯

Ã. (6.22)

As an example, the order condition for tree number 3 can simplified to

ÿ

biω̃ij c̃j ãjkck “ p0 0 . . . 1q ÃÃ´1 `

c̃ ˝ pÃcq
˘

“ c̃s
ÿ

bici “
ÿ

bici “
1
2

, (6.23)

where ˝ denotes the elementwise product, i.e., c “ a ˝ b means ci “ aibi. If the
Runge-Kutta method satisfies the classical second-order condition

ř

bici “ 1
2 this

additional order condition is satisfied. A similar simplification of trees 1 and 2

yields the conditions c̃2
s “ 1 and c̃3

s “ 1, which are automatically satisfied, see
equation (6.2). In conclusion, the specific form of the pressure term in the Navier-
Stokes equations and the use of explicit methods leads to the observation that all
additional order conditions are trivially satisfied, at least up to and including order
4. This is also true for order 5, for which 6 stages are needed (although methods with
order higher than 4 are hardly used for the time integration of the incompressible
Navier-Stokes equations). We conjecture that this is true for any order, i.e., when
applying an explicit Runge-Kutta method to the incompressible Navier-Stokes equations
no additional order conditions appear for the u-component, and consequently no order
reduction occurs.

On the other hand, order reduction will occur if the continuity equation MŨi “

r1pt̃iq is not satisfied at all intermediate stages. Since this does not affect the stability
domain of the method, this method can still be of interest to compute steady flows
with a time stepping technique, because stability is then much more important than
temporal accuracy. The effect on the order of accuracy of the velocity requires the
study of the influence of perturbations in the constraint on the velocity at the end
of the time step. Such a study is left as a suggestion for further research; here we
focus on methods that satisfy the constraint at each stage, so s Poisson equations
are solved for an s-stage method.

For the p-component the above simplification of the additional order conditions
is not possible and we have to look in more depth in whether the remaining order
conditions can be satisfied. This will be detailed in section 6.3.

6.2.5 Time-dependent operators

The interesting case of a time-dependent gradient operator Gptq can be treated in
an analogous fashion. The additional trees that result when fp is not constant but
depends on time leads to the trees shown in table 6.3. In contrast to table 6.1,
the order conditions associated with these trees do not reduce to classical order
conditions. This table is similar to table 1 in [20], but with the difference that in that
work trees containing fpp, fppp and fppu are also present. We present this table here
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as a reference for practitioners of Runge-Kutta methods for time integration of the
incompressible Navier-Stokes equations on time-varying meshes.

For a third order method there is one additional tree, denoted by number 10.
Evaluating the condition associated with this tree for a three-stage method, together
with the four classical order conditions for third order methods, leads to a solution
family with c3 “ 1, and c2 as a free parameter (c2 ‰ 0, c2 ‰ 2

3 , c2 ‰ 1):

a21 “ c2 a31 “
3c2 ´ 3c2

2 ´ 1
c2p2 ´ 3c2q

a32 “
1 ´ c2

c2p2 ´ 3c2q
, (6.24)

b1 “
3c2 ´ 1

6c2
b2 “

1
6c2p1 ´ c2q

b3 “
2 ´ 3c2

6p1 ´ c2q
. (6.25)

This family excludes Wray’s popular third-order method [94]. Wray’s method re-
duces to second order for time-dependent operators, such as moving meshes, and
is therefore not recommended in this case.

For a fourth order method six additional trees appear due to the time dependency
of G. It is proven in [20] that the order condition corresponding to tree number 15

cannot be satisfied with a four-stage, fourth-order method. An example of a five-
stage, fourth-order method that satisfies the conditions corresponding to trees 10-15

is the HEM4 method [20]. It does not satisfy the conditions corresponding to trees
6 and 7, so it is second order accurate for the pressure.

Note that the time-dependence of fp also leads to additional trees for the pressure,
next to those already mentioned in table 6.2. They are of order 2 or higher.

6.2.6 A note on space-time errors

At this point it is worthwhile to mention that, apart from the order reduction mech-
anism discussed above (a result of the differential-algebraic nature of the Navier-
Stokes equations), another mechanism for order reduction exists. This mechanism,
analyzed for example in [31, 1, 74, 124], can result when Runge-Kutta methods are
applied to PDEs with time-dependent inflow boundary conditions and the exact
boundary values are imposed for the intermediate stages (as we do in the cur-
rent work, see equation (5.12)). Order reduction then appears when studying the
full space-time error, i.e., when simultaneously refining mesh and time step (for
example mesh refinement at a fixed CFL number). A solution to this problem is
to not impose any intermediate boundary values but instead obtain these values
by integrating the semi-discrete equations at the boundary, using one-sided differ-
ence stencils to approximate the spatial derivatives (perhaps using the boundary
discretizations from chapter 4). It is questionable if this is a mathematically valid
approach for the incompressible Navier-Stokes equations, but in any case it signific-
antly reduces the allowable time step for stability [124]. Another fix, for linear and
non-linear hyperbolic PDEs, is presented in [31, 1], which boils down to repeated
differentiation of the boundary condition and then cleverly integrating it along with
the Runge-Kutta method for the interior points. However, it is questionable if such
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a fix also works for the incompressible Navier-Stokes equations (a system of DAEs
of mixed parabolic-elliptic type), because a change in boundary conditions for the
intermediate stages affects the divergence equation. As mentioned before, this re-
quires a study of the effect of perturbations in the divergence-free constraint on the
order of accuracy. Furthermore, the fix of [31, 1] requires that r1 can be differen-
tiated with respect to time; this derivative is not always available (as in the case
of a turbulent inflow field) or might not even exist (e.g. a boundary condition of
the form e1´1{t for t ě 0 does not have a proper derivative at t “ 0). Note that
this differentiability of r1 with respect to time will be encountered again in the next
section when discussing the accuracy of the pressure. A cure for DAEs (or even
for the specific case of the incompressible Navier-Stokes equations) is, to the au-
thors’ knowledge, not yet available. Fortunately, the order reduction from unsteady
boundary conditions as described above, generally only manifests itself at very fine
grids due to a small coefficient of the leading error term [31]. For the numerical
experiments in this chapter we use the second order accurate discretization, so that
a possible order reduction in the global error is likely to be overwhelmed by the
spatial error. Therefore, in our current work we focus on the temporal error only;
we fix the mesh and then refine the time step. We leave the possible interplay of
temporal and spatial errors as suggestion for future research.
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ã k
lc

l
“

3 2
ř

ω̃
si

c̃ i
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ã k

la
lm

c m
“

1 2
ř

a s
ic

i
“

1 2
p´

g u
f p

q´
1 g u

f u
f u

f

9
.

2

ř

b i
ω̃

ij
ω̃

jk
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6.3 the accuracy of the pressure

6.3.1 Single Butcher tableau for velocity and pressure (Method 1)

We continue with an order study of the pressure when formulation (6.4)-(6.6) with
(5.31) is employed. As was the case in table 6.1, the order conditions in table 6.2
can also be simplified in certain cases by employing equation (6.22). However, in
contrast to the u-component, additional order conditions remain, even for a second-
order method. This is not a surprise when considering that the Lagrange multipliers
ϕ and ψ are of a different nature than the pressure p (integral versus point value).
Here we concentrate on obtaining an accurate point value for the pressure. Such a
point value is of interest when comparing, for example, a pressure distribution at
a certain time instant with an experimentally obtained pressure distribution at the
same time instant. However, in other cases, such as computing the displacement of
a body due to aerodynamic forces in a CFD code for fluid-structure interaction, the
integral value can be a better quantity to use.

We should note that all additional order conditions for the pressure can be cir-
cumvented entirely by solving an additional Poisson equation, equation (5.7), at
tn`1:

Lpn`1 “ MFn`1 ´ 9r1ptn`1q. (6.26)

Given an r-th order accurate velocity field un`1, the resulting pressure pn`1 is of the
same order of accuracy. However, there are two issues in solving equation (6.26).
Firstly it is required that r1ptq can be differentiated (analytically or numerically),
something which is not required in the computation of u and ϕ. In many practical
computations, for example involving a prescribed turbulent inflow, 9r1ptq might not
be available. Secondly, solving equation (6.26) amounts to the solution of an addi-
tional Poisson equation, which is computationally costly. We will therefore look at
the additional conditions of table 6.2, which, when satisfied, give a higher order
accurate pressure without solving equation (6.26).

6.3.1.1 Two-stage methods

For two-stage, second-order methods we have the classical conditions b1 ` b2 “ 1
and b2c2 “ 1

2 . For a second-order accurate pressure the conditions corresponding
to trees 4 and 5 have to be satisfied as well. The additional order condition corres-
ponding to tree 4 is

2
ÿ

i“1

ω̃2i c̃2
i “ 2, (6.27)

where

pωijq “ A´1 “

¨

˝

1
a21

0

´
b1

a21b2
1
b2

˛

‚. (6.28)
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This results in the condition
a21 ´ b1c2

a21b2
“ 2. (6.29)

The order condition corresponding to tree 5 is

c2 “ 1. (6.30)

This latter condition results in b1 “ b2 “ 1
2 after applying the classical order con-

ditions. However, condition (6.29) can then not be satisfied, because it reduces to
a21 ´ 1

2 “ a21. It is therefore not possible to obtain better than first-order accuracy
for the pressure with a two-stage explicit method.

6.3.1.2 Three-stage methods

Butcher [25] lists three cases for which a three-stage, third-order explicit method
exists. Only in the ‘case I’ family there is a solution that allows c3 “ 1 (the con-
dition corresponding to tree 5), which is the same as solution family (6.24)-(6.25).
Evaluating the order condition corresponding to tree 4 for this family leads to

3c2
2 ´ 7c2 ` 4
3c2 ´ 2

“ 2, (6.31)

which has only one valid solution, being c2 “ 1
3 . The resulting Butcher tableau is

0 0
1
3

1
3

1 ´1 2

0 3
4

1
4

(6.32)

which satisfies indeed trees 4 and 5. Evaluating equation (5.30) gives

pn`1 “ ψ̃3 “ ´
3
2

ϕ̃1 ´
3
2

ϕ̃2 ` 4ϕ̃3. (6.33)

The conditions corresponding to trees 6, 7 and 8 are not satisfied, and the pressure
is at best second-order accurate.

We remark that the occurrence of negative coefficients in (6.32) and (6.33) will
in general not lead to spurious, non-positive solution behavior, as long as the in-
compressible Navier-Stokes solutions are ‘smooth’ enough. In chapter 8 we will
encounter situations where this is not the case. No measures will be taken to make
(6.32), (6.33), or any following method positive.
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6.3.1.3 Four-stage methods

For explicit four-stage, fourth-order methods the classical order conditions require
c4 “ 1 (see e.g. [25]), which tree 5 (and 9) automatically satisfy. We found three
methods that also satisfy the condition corresponding to tree number 4; they read:

0 0

1 1
1
2

3
8

1
8

1 ´ 1
8 ´ 3

8
3
2

1
6 ´ 1

18
2
3

2
9

0 0
2
3

2
3

7
12

91
192

7
64

1 1
7 ´2 20

7

5
28 ´ 3

4
48
35

1
5

0 0
3
4

3
4

5
9

100
243

35
243

1 4
75 ´ 19

21
324
175

8
45 ´ 16

63
243
280

5
24

(6.34)
For example, evaluating equation (5.30) for the left tableau gives

pn`1 “ ψ̃4 “
1
2

ϕ̃1 ´ 2ϕ̃2 ´ 2ϕ̃3 `
9
2

ϕ̃4. (6.35)

As can be readily calculated, none of the above methods satisfies the conditions
corresponding to trees 6, 7 and 8. Therefore, with a four-stage, fourth-order explicit
method the pressure is, again, at best second-order accurate.

6.3.2 Reconstructing instantaneous pressure values from time averages (Method 2)

We mentioned in section 5.3.2 that ϕ̃i defined by (5.24) is only first-order accurate in
time but that higher order accurate pressures ψ̃i are possible with the generalized
formulation (5.29). With the choice Ãp “ Ã this led to the order conditions outlined
in section 6.3.1, and it appeared that only a limited number of three-stage and four-
stage methods lead to a second-order accurate pressure. In this section we take a
different approach by relating the integral averages ϕ̃i to the point value pn`1. In
fact, this boils down to taking Ãp ‰ Ã, although it is not necessary to explicitly
derive Ãp.

First we consider the exact integration of equation (5.7) from tn to t̃i, which reads

L
ż t̃i

tn

pptq dt “ M
ż t̃i

tn

Fptq dt ´ pr1pt̃iq ´ r1ptnqq, (6.36)

and we denote the exact average of p over this interval by ϕpt̃iq (the exact counter-
part of the approximation ϕ̃i):

ϕpt̃iq “
1

c̃i∆t

ż t̃i

tn

pptq dt. (6.37)
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The challenge is to find a higher order accurate point value pn`1 from the time
average values ϕpt̃iq. This is schematically shown in figure 6.1. Such an approxima-
tion of point values from integral averages is well-known in the field of Essentially
Non-Oscillatory (ENO) conservative finite difference schemes and is called recon-
struction. We follow [165] to perform this reconstruction, and refer to that work for
more details. Denoting the primitive function of pptq by Pptq, we can write

ϕpt̃iq pc̃i∆tq “

ż t̃i

tn

pptq dt “ Ppt̃iq ´ Pptnq, i “ 1, 2, . . . s. (6.38)

We then construct a polynomial Hptq that interpolates Pptq at the following points:

t̃k1 , t̃k2 , . . . , t̃km , (6.39)

where K “ tk1, . . . , kmu is the set of points that will be used in the interpolation.
We always take k1 “ 0 and km “ s (using the convention that t̃0 “ tn). The other
values of k depend on which of the intermediate stages are used in the interpolation.
One could take all points, i.e., K “ t0, 1, . . . , su, but this is in general not necessary,
as we will show later. The derivative of Hptq is denoted by hptq. Then hptq is an
approximation to pptq, and their integrals are the same:

1
c̃i∆t

ż t̃i

tn

hptq dt “
1

c̃i∆t

ż t̃i

tn

H1ptq dt “
1

c̃i∆t
`

Hpt̃iq ´ Hptnq
˘

,

“
1

c̃i∆t
`

Ppt̃iq ´ Pptnq
˘

“
1

c̃i∆t

ż t̃i

tn

pptq dt “ ϕpt̃iq.

(6.40)

The crucial point in this derivation is that Hptq interpolates Pptq exactly at the points
used for the construction of the polynomial. We employ the Lagrange form of the
interpolation polynomial, i.e., we write

Hptq “
ÿ

kPK

Ppt̃kqℓkptq, (6.41)

where

ℓkptq “
ź

jPK,j‰k

t ´ t̃j

t̃k ´ t̃j
. (6.42)

For a well-posed polynomial we require that all t̃k are distinct. Hptq can be written
in terms of the integral values ϕpt̃iq by subtracting Pptnq from both sides and using
ř

kPK ℓkptq “ 1:
Hptq ´ Pptnq “

ÿ

kPK1

ϕpt̃kq c̃k∆t ℓkptq, (6.43)
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where K1 “ tk2, . . . , kmu. Differentiation then leads to

hptq “
ÿ

kPK1

ϕpt̃kq c̃k∆t ℓ1
kptq. (6.44)

Given the values ϕpt̃kq and the points t̃k this expression can be evaluated at tn`1,
which provides the approximation we are looking for:

pn`1 “ hptn`1q. (6.45)

Using m ´ 1 ϕ values (the number of elements in K1) this results in an pm ´ 1q-th or-
der accurate pressure. If all ϕ values are used, then m ´ 1 “ s and one could, in the-
ory, obtain an s-th order accurate pressure. Note that, in contrast to ENO schemes,
we do not choose the reconstruction points in such a way that the smoothest stencil
results.

In practice we cannot use the exact average ϕpt̃iq to find pn`1. ϕpt̃iq is approxim-
ated by ϕ̃i, whose order of accuracy depends on the stage order of the method. This
stage order can be expressed by making use of simplifying condition Cipηq, equa-
tion (5.17). We remark that with the notation of the shifted tableau, C̃sppq is equal
to simplifying condition Bppq. Assuming that C̃ipqq holds, the equation for ϕpt̃iq can
be written as

Lϕpt̃iq “
1
c̃i

i
ÿ

j“1

ãij MFj ´
r1pt̃iq ´ r1ptnq

c̃i∆t
` Op∆tqq, (6.46)

so that the difference between the exact integral and its numerical approximation is
Op∆tqq:

ϕpt̃iq “ ϕ̃i ` Op∆tqq. (6.47)

To summarize, it is possible to obtain a higher order accurate pressure at tn`1 by
combining the average values ϕ̃i from the different stages. To attain a certain order
r requires at least r distinct stages (i.e. with different ci), and each individual stage
i should have stage order r, i.e., satisfy Ciprq. We will now check if this is possible
for methods with two, three and four stages.

6.3.2.1 Two-stage methods

For two-stage, second-order methods C̃2p2q “ Bp2q is obviously satisfied, but C̃1p2q

cannot be satisfied because the equation for Ũ1 is simply a Forward Euler step,
which is first-order accurate (this is always the case for explicit methods).

6.3.2.2 Three-stage methods

Since C̃1p2q cannot be satisfied, we require C̃2p2q to be satisfied, i.e.,

a32c2 “
1
2

c2
3, (6.48)
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φpt̃1q

φpt̃2q
φpt̃3q

p

pn`1

tn t1 t2 tn`1

Figure 6.1: Combining ϕptiq to obtain a higher order accurate pn`1.

together with the condition c3 ‰ 1 to have distinct c’s. Using the third-order condi-
tions

b3a32c2 “
1
6

, b2c2
2 ` b3c2

3 “
1
3

, (6.49)

this leads to b1 “ 1
4 , b2 “ 0, b3 “ 3

4 and c3 “ 2
3 . c2 can be chosen freely (‰ 0), and

then determines a31 and a32. Wray’s popular third-order method [94] falls in this
category, with c2 “ 8

15 - see equation (6.50).

0 0
8
15

8
15

2
3

1
4

5
12

1
4 0 3

4

(6.50)

0 0
2
3

2
3

2
3

1
3

1
3

1
4 0 3

4

(6.51)

Another possibility is to take c2 “ c3, which saves an evaluation of boundary condi-
tions and forcing terms; this gives tableau (6.51). The interpolation polynomial hptq
from equation (6.44) is independent of c2 and given by:

hptq “ ´

˜

2 t´tn
∆t ´ 1

1 ´ c3

¸

ϕ̃2 `

˜

2 t´tn
∆t ´ c3

1 ´ c3

¸

ϕ̃3, (6.52)

and pn`1 follows with c3 “ 2
3 as

pn`1 “ hptn`1q “ ´3ϕ̃2 ` 4ϕ̃3. (6.53)

This equation provides a new way to obtain a second-order accurate pressure by
combining two first-order accurate pressures of a three-stage method. It is also
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valid when Wray’s method is used only for the convective terms and an appropriate
implicit method for the diffusive terms, such as the method from [181].

If one wants to maximize stability instead of order of accuracy (second-order ac-
curacy is sufficient in many practical applications), one can use three-stage methods
that are second order for the velocity. Combining the condition for maximum sta-
bility along the imaginary axis (b3a32c2 “ 1

4 ) with condition (6.48) yields a family
of methods with c2 and c3 as free parameters. An example of a low-storage method
satisfying these conditions is presented in Perot and Nallapati [127], but it has c3 “ 1
so a second-order accurate pressure cannot be obtained. We propose the following
alternative method

0 0
1
2

1
2

1
2

1
4

1
4

0 ´1 2

(6.54)

which we obtained by requiring b1 “ 0 and c2 “ c3. The requirement b1 “ 0 leads
to the same storage requirements as [127], and c2 “ c3 has the advantage that only
one intermediate boundary condition evaluation is needed.

6.3.2.3 Four-stage methods

Four-stage, fourth-order methods have c4 “ 1, so that even if C̃3p2q would hold, it
cannot be used. We therefore look again for methods that satisfy C̃2p2q. Combining
condition (6.48) with the fourth-order conditions leads to c3 “ 1

2 and two families
of solutions result, corresponding to the ‘case II’ and ‘case IV’ solutions found by
Kutta [25]:

0 0

c2 c2

1
2

1
2 ´ 1

8c2
1

8c2

1 1
2c2

´ 1 ´ 1
2c2

2

1
6 0 2

3
1
6

(6.55)

0 0

1 1
1
2

3
8

1
8

1 1 ´ 1
4b4

´ 1
12b4

1
3b4

1
6

1
6 ´ b4

2
3 b4

(6.56)

The left tableau with c2 “ c3 “ 1
2 is attractive because it requires only one interme-

diate evaluation of boundary conditions and forcing terms. In a similar fashion as
the three-stage method (equation (6.52) with ϕ̃3 replaced by ϕ̃4), pn`1 follows as

pn`1 “ ´2ϕ̃2 ` 3ϕ̃4. (6.57)

Again, this equation provides a new way to obtain a second-order accurate pressure
by combining two first-order accurate pressures of a four-stage method.
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6.3.3 Steady boundary conditions for the continuity equation (Method 3)

An important case for the incompressible Navier-Stokes equations is when the
boundary conditions for the continuity equation are steady, i.e., equation (3.1) can
be written as

Mu “ r1, (6.58)

where r1 is independent of t. Equation (5.1) then reads gpuq “ 0, with g linear in u.
This means that gu “ constant and all partial derivatives of gu (guu, gut, gtt, etc.) are
zero. As before, all additional trees for the u-component (table 6.1) disappear, but
most of the trees for the p-component (table 6.2) also vanish. Only trees 5, 8 and 9

remain, and it is possible to find higher order accurate methods for the pressure.
For example, with two stages a second-order accurate pressure is possible (c2 “ 1),
and with four stages a third-order accurate pressure is possible. However, it is not
necessary to consider such methods, because in the case gu “ constant the pressure
can be computed to the same order of accuracy as the velocity, without additional
cost. This can be seen by comparing equation (5.24) for i “ 1 with equation (6.26):

Lpn “ MFn ´ 9r1ptnq, (6.59)

Lϕ̃1 “
ã11

c̃1
MF1 ´

r1pt̃1q ´ r1ptnq

c̃1∆t
. (6.60)

Considering that F1 is equal to Fn (determined at the end of the previous time step)
and that ã11 “ c̃1, these expressions are equal if r1 is independent of time (or a linear
function of t). This means that ϕ̃1 is actually the r-th order accurate pressure at tn,
and the additional Poisson solve associated with equation (6.26) can be avoided. An
existing implementation could remain unaltered; instead of taking ϕ̃s “ ϕn`1, the
pressure that makes un`1 divergence free, one should take ϕ̃1 from the next time
step to have a higher order accurate pressure at the end of the current time step.
We prefer to compute pn`1 and then skip the computation of ϕ̃1 in the next time
step. This works for any explicit Runge-Kutta method with at least two stages, thus
providing a simple way to improve the temporal accuracy of the pressure without
increasing computational cost.

6.4 results

We classify the methods described in the previous sections as follows. The methods
that were derived in section 6.3.1 (with Ãp “ Ã) will be indicated by M1, the
methods derived in section 6.3.2 are indicated by M2, and in case section 6.3.3
applies we write M3. We then write MmSsRr to indicate that an s-stage explicit
Runge-Kutta method of type m is used with order s for the velocity and order r for
the pressure. For example, there are three methods of type M1S4R2 and they are
given by the tableaux in (6.34). In case m “ 3, we can always make r equal to s with
the approach of section 6.3.2, and any existing s-stage, s-th order method can be
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used. In case r “ 1 we have the standard approach with pn`1 “ ϕ̃s, which can be
used with any method.

6.4.1 Taylor-Green vortex

We use the Taylor-Green vortex from section 3.3.1 again, this time to investigate
the temporal accuracy. We take a coarse mesh with 20 ˆ 20 volumes and vary the
time step. The spatial error clearly overwhelms the temporal error and in order to
compute the latter, we subtract the solution from a simulation with a small time
step (∆t “ 10´3), so that the spatial error is effectively eliminated.

The first test concerns periodic boundary conditions, such that the observations
from section 6.3.3 apply and the methods are characterized as M3. Four s-stage,
sth-order Runge-Kutta methods are tested, with s “ 1, 2, 3, 4. For s “ 1 we take
Forward Euler, for s “ 2 modified Euler (explicit trapezoidal, Heun’s method),
for s “ 3 Wray’s method, and for s “ 4 the classical fourth-order method. In all
cases the number of Poisson solves is the same as the number of stages. Figure
6.2a shows that with our current approach both pressure and velocity attain the
classical order of convergence, whereas the standard method (pn`1 “ ϕ̃s) leads to
only first order convergence of the pressure, see figure 6.2b. The velocity error is
unaffected by the accuracy of the pressure. For this very smooth test case the error
of higher order methods does not only converge faster upon time step refinement
(as predicted by theory), but the magnitude of the error for the largest time step is
also much smaller. In this particular example the two-stage, second-order method
is stable and accurate enough and is to be preferred over the more expensive three-
and four-stage methods.
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Figure 6.2: Convergence of temporal error for Taylor-Green problem with periodic boundary
conditions.
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The second test concerns unsteady Dirichlet conditions with methods of type M1.
For s “ 1 and s “ 2 only r “ 1 is possible, so we focus on s “ 3 and s “ 4 with r “ 2.
For M1S3R2 the only solution is (6.32) with (6.33) for the pressure, for M1S4R2 we
take the first tableau in (6.34) (because it has the simplest coefficients) and (6.35) for
the pressure.

The third test concerns unsteady Dirichlet conditions with methods of type M2.
As for methods of type M1, we focus on s “ 3 and s “ 4. For M2S3R2 we take
Wray’s method with (6.53) for the pressure and for M2S4R2 we take (6.55) with
c2 “ 1

4 and (6.57) for the pressure.
Figures 6.3a and 6.3b then show the order of accuracy of the velocity and pres-

sure for these two methods, in case of the ‘standard’ approach (R1), our approach
(R2) and in case of an additional Poisson solve (R3 or R4). The additional Poisson
solve can be performed because the explicit dependence of r1 on t is known so that
9r1ptq can be calculated. The velocity error is in all cases again independent of the
particular approach for the pressure. Both methods M1 and M2 indeed lead to a
second-order accurate pressure when the proper Butcher tableaux are chosen. The
difference in accuracy between the results of M1 and M2 is small, but this depends
on the test case under consideration. The computational effort is for both very sim-
ilar. These second-order schemes greatly improve the accuracy with respect to the
standard first-order approach without additional cost. The effort of an additional
Poisson solve can only be justified in case higher-order accurate (third or fourth
order) pressure solutions are required.
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Figure 6.3: Convergence of temporal error for Taylor-Green problem with unsteady Dirichlet
boundary conditions.
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6.4.2 An actuator disk in an unsteady inflow field

A practically relevant situation with a temporally varying inflow appears when
simulating the flow of air through wind turbines operating in a turbulent atmo-
spheric wind field. The wind turbine is modeled following the generalized actuator
approach, introduced in section 1.4.1, and to be discussed in detail in chapter 8.

Here we study a simplified case of an actuator disk in a laminar flow. The domain
is r0, 10s ˆ r´2, 2s, the Reynolds number is 100 and the thrust coefficient of the
turbine is CT “ 1

2 . The actuator disk is located at x “ 2 and has unit length, see
figure 6.4. On all boundaries, except the inflow boundary at x “ 0, we prescribe
outflow conditions (see e.g. [207]):

y “ ´2, 2 :
Bu
By

“ 0, p ´
1

Re
Bv
By

“ p8, (6.61)

x “ 10 : p ´
1

Re
Bu
Bx

“ p8,
Bv
Bx

“ 0. (6.62)

For a verification study of the actuator disk in a laminar flow with steady inflow
and these boundary conditions we refer to [145]. In the current test, the inflow
conditions are given by:

x “ 0 : ubptq “ cos αptq, vbptq “ sin αptq, (6.63)

where αptq “ π
6 sinpt{2q. This describes a time-varying inflow with constant mag-

nitude but changing direction, see figure 6.5a.

ubptq
vbptq

αptq

F

actuator disk

wake

Figure 6.4: Actuator disk in an unsteady inflow field.

First we perform a simulation from t “ 0 to t “ 4π, with a uniform mesh having
200 ˆ 80 volumes and 10, 000 time steps, using the M2S4R4 method of equation
(6.55), again with c2 “ 1

4 . We focus on methods of type M2, because they still allow
for some freedom in the choice of the coefficients of the Butcher tableau, in contrast
to methods of type M1. In figure 6.5b the normalized kinetic energy of the flow
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Figure 6.5: Inflow and total kinetic energy as a function of time.

(integrated over the entire domain) is shown, from which it can be concluded that
the flow becomes periodic with period 2π after approximately t “ 4π. The velocity
and pressure field at this time instant are shown in figures 6.6 and 6.7. The wake
has been deflected downwards due to the inflow with negative vb that was present
from t “ 2π to 4π. The presence of the actuator disk is clearly seen in the pressure
contours; they are discontinuous across the disk.

Due to the very small time step, these velocity and pressure fields have a negli-
gible temporal error compared to the spatial error, and are therefore used to com-
pute the temporal error in the velocity and pressure field for larger time steps. The
resulting convergence of the velocity and pressure error is shown in figure 6.8, for
methods (6.50) and (6.55). As before, we see that the velocity attains its classical or-
der of accuracy, i.e., third order for the three-stage method, and fourth order for the
four-stage method. The pressure can be computed to the same order as the velocity,
but this requires an additional Poisson solve and an expression for 9r1ptq. Since 9r1ptq
contains only the normal velocity component on the boundary, it is sufficient to
derive the expression for 9ubptq:

9ubptq “ ´
π

12
sin pαptqq cospt{2q. (6.64)

On the other hand, the standard approach is only first order and starts with a
large error at large time steps. Our proposed approach, corresponding to the lines
M2S3R2 and M2S4R2, does not require any significant additional computational
effort (no additional Poisson solve, no evaluation of 9r1ptq), it clearly shows second-
order accuracy and starts with a small error already at the largest time step con-
sidered. This time step, ∆t “ 4π{200, is the largest step for which stable solutions
could be obtained. It is determined by the convective terms, showing the benefit of
explicit Runge-Kutta methods for this test case.
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Figure 6.6: Streamlines and u-contour lines at t “ 4π.
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Figure 6.7: Streamlines and p-contour lines at t “ 4π.
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Figure 6.8: Velocity and pressure error at t “ 4π for a selection of methods.
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6.5 conclusions

In this chapter we have analyzed the temporal order of accuracy of the velocity
and pressure when explicit Runge-Kutta methods are applied to the incompress-
ible Navier-Stokes equations. It is shown that the order of accuracy of the velocity is
not affected by the differential-algebraic nature of the incompressible Navier-Stokes
equations and is therefore the same as for non-stiff ordinary differential equations.
However, if the semi-discrete equations involve time-dependent operators, then ad-
ditional order conditions appear for orders higher than two. These conditions re-
strict three-stage, third-order methods to a one-parameter family of methods, to
which the popular method of Wray does not belong. Four-stage, fourth-order meth-
ods for time-varying operators do not exist, and one has to resort to five stages to
achieve fourth order.

In any case (time-dependent and time-independent operators) the pressure suf-
fers from the problem that upon time stepping a time-average pressure is computed,
instead of a point value. Therefore, achieving higher than first order accuracy for
the pressure imposes additional conditions on the coefficients of the Runge-Kutta
method compared to the classical order conditions. Fortunately, if the boundary
conditions for the continuity equation are independent of time, then the pressure
can be determined to the same order of accuracy as the velocity, without requiring
an additional solution of a Poisson problem. However, if the boundary conditions
for the continuity equation depend on time, then additional order conditions for
the pressure appear. These are not satisfied by most existing explicit Runge-Kutta
methods, so that the pressure is typically only first-order accurate in time. Using
the same Butcher tableau for velocity and pressure, second-order accuracy can be
achieved by only one three-stage, and only three four-stage methods.

A new approach is to reconstruct instantaneous pressure values from time-aver-
age values. We showed that this reconstruction, based on Lagrange polynomials,
can be of the same order as the number of stages, but that the stage order of the
method limits the accuracy of the pressure. These methods can be interpreted as
having a different Butcher tableau for velocity and pressure, in contrast to the fore-
going single-Butcher array approach. Three- and four-stage methods with second-
order stage order were derived, leading to a much larger class of methods that have
second-order accuracy for the pressure. Furthermore, a distinct advantage of this
new class of methods is that they can be directly applied to implicit and implicit-
explicit (IMEX) Runge-Kutta methods as well.

In all cases considered here third-order accuracy could not be obtained with a
three- or four-stage method without resorting to an additional Poisson solve. Such
an additional solve is not always straightforward in practical computations, because
it requires the derivative of the boundary conditions for the continuity equation
with respect to time. If the additional Poisson solve is to be performed anyway, the
proposed second-order accurate methods can be used to provide an accurate and
cheap initial guess for iterative methods (such as the conjugate gradient method) to
solve this Poisson equation.
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Runge-Kutta methods with more than four stages might perhaps lead to higher-
order accurate pressures, but such methods are not very relevant from a practical
point of view. For example, when considering five-stage methods (requiring five
Poisson solves), to obtain third-order accuracy for the pressure, it would be better
to employ an additional Poisson solve in a four-stage method, leading to fourth-
order accuracy of the pressure (assuming that 9r1ptq is available). However, methods
with more stages than the classical order of accuracy (e.g. a four-stage third-order
method) can be of interest from a stability point of view. Such methods can possibly
be used with less Poisson solves than the number of stages.

To conclude, we think that the ‘best’ explicit Runge-Kutta method for many in-
compressible Navier-Stokes problems is a three-stage method of type M2, that is
third order for the velocity and second order for the pressure. It combines stability
(includes the imaginary axis), sufficient accuracy (temporal error is in general suf-
ficiently small) and flexibility (c2 can still be chosen, in contrast to the three-stage
method of type M1). A fourth-order method might lead to unnecessarily accurate
solutions for the velocity without improving the order of accuracy of the pressure.
For time-dependent operators, the three-stage method derived in section 6.3.1.2 is
to be preferred: it maintains third-order accuracy on time-varying meshes, and is
second-order accurate for the pressure. Of course, the coefficients of a Runge-Kutta
method can be chosen on other grounds than accuracy only, for example low stor-
age, low dispersion or built-in error estimation with adaptive step-size control. Such
arguments have not been considered in this chapter.
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adapted
from [146]With regard to the issue of secondary conservation, prior investigators have

focused almost exclusively on the spatial discretization scheme. [128]

7.1 introduction

In the previous chapter we have analyzed explicit Runge-Kutta methods for the in-
compressible Navier-Stokes equations. In this chapter we focus on implicit Runge-
Kutta methods that extend the energy-conservation property of the spatial discret-
ization when marching in time. The advantages of energy conservation were dis-
cussed in in section 2.1. Typically, time-integration methods used in conjunction
with spatially energy-conserving methods are explicit methods, like explicit Runge-
Kutta or Adams-Bashforth (AB) methods, possibly with an implicit Crank-Nicolson
(CN) scheme for the diffusive term in case of wall-bounded flows. The divergence-
free constraint is imposed with a fractional step approach, that decouples the treat-
ment of velocity and pressure when marching in time. Examples are Wray’s third
order method (with or without CN) [116, 87, 181, 94], AB2 (with or without CN)
[103, 86] or a generalization of AB2 [203]. The AB2 method is unstable for pure
convection problems, and the explicit Runge-Kutta methods of order higher than 2

usually add a small amount of dissipation, because their amplification factors are
smaller than unity inside the linear stability domain on the imaginary axis. In gen-
eral such explicit methods are efficient if the time step is dictated by accuracy, and
not by stability. In that case the errors associated with the spatial discretization are
typically much larger than the errors associated with the temporal discretization
[58].

Relatively little research has been performed on the use of energy-conserving
methods for the Navier-Stokes equations. One example is the work of Ham et al.
[65], who employ the implicit midpoint method and solve pressure and velocity
coupledly. They find that the statistics of the DNS of turbulent channel flow are
much less sensitive to the time step than results obtained by Choi and Moin [37]
(who use a Crank-Nicolson scheme with a fractional step method), although the
CFL number was still limited to approximately 4 in order to have solutions that
were accurate enough. Mullen et al. [120] also apply the implicit midpoint method
and indicate how to accelerate the solution of the non-linear system. It is found that
the Crank-Nicolson method is not exactly energy-conserving, but oscillates around
the initial energy. Simo et al. [168] recognized that it is possible to conserve energy in
time (and therefore obtain non-linear stability) with a linear implicit scheme, since
the time level of the convecting quantity does not affect the secondary conservation
properties of the convected quantity. For the laminar flow over a circular cylinder
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it is shown that the linear implicit scheme is as accurate as the non-linear implicit
scheme. Mullen et al. [120] take a similar approach in their hybrid time integration,
taking vorticity evaluated at the previous time level. Turek [193] also discusses such
linear implicit schemes, but not in conjunction with energy conservation.

A drawback of these energy-conserving methods is that they are necessarily im-
plicit, leading to a higher computational cost per time step as compared to explicit
methods (namely the solution of a non-linear saddle point problem at each time
step instead of a Poisson equation for the pressure). A common view is that the
time step for the simulation of turbulent flows is dictated by accuracy, and not by
(convective) stability, so that an implicit treatment of the convective terms is not
efficient. This, however, depends on the specific flow problem [58]. For example,
Verstappen et al. [200] argue that in many turbulent flows the time step imposed
by the convective stability limit can be much smaller than the characteristic time-
scale of the smallest resolved eddies. Similarly, Vreman [204] mentions that the time
step determined by the stability restriction of the numerical scheme is considerably
smaller than the shortest turbulent time-scale. Consequently, the truncation errors
from the spatial discretization method are more important than truncation errors
resulting from the discretization in time, when using explicit methods. This opens
the perspective for efficient application of implicit methods. Turek [193] also sug-
gests to use implicit methods, for both convection and diffusion, to allow for larger
time steps.

Another potential drawback of energy-conserving methods is that they are not
well-suited for stiff problems. Methods like implicit midpoint and Crank-Nicolson
are not L-stable, meaning that they hardly damp stiff components (arising for ex-
ample from initial and/or boundary conditions), and oscillatory solutions can res-
ult. One of the issues we address in this chapter is the construction of new methods
that are both energy-conserving and L-stable.

Related to energy conservation is the time-reversibility property of the invis-
cid equations, since both properties are destroyed as soon as viscosity is intro-
duced. These properties can therefore be used to assess if a discretization intro-
duces numerical diffusion, as suggested by Duponcheel et al. [45], although in
fact no fully reversible time integration methods are used in that work. A time-
reversibility test was performed by Ham et al. [65], showing that the implicit mid-
point method is time-reversible in the inviscid limit, until round-off errors contam-
inate the solution. However, questions such as ‘are there energy-conserving meth-
ods which are not time-reversible?’, ‘are there time-reversible methods which are
not energy-conserving?’, and ‘is one of these properties more important than the
other for fluid simulations?’ have apparently not yet been assessed for the incom-
pressible Navier-Stokes equations.

In this chapter we will investigate the use of Runge-Kutta methods for high-order,
energy-conserving time integration of the incompressible Navier-Stokes equations.
Runge-Kutta methods can combine high-order with good stability and efficiency,
they allow easy adaptive step size selection and are self-starting; multi-step meth-
ods, although less costly, do not have these properties, and it is questionable if they
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can be energy-conserving [61]. We start with the general framework for Runge-
Kutta methods for incompressible flows from chapter 5. We investigate higher
order methods that are energy-conserving and/or time-reversible. Subsequently
we propose a new class of additive Runge-Kutta methods that combine energy-
conservation properties with L-stability. High-order accurate pressures are obtained
with the techniques from chapter 6. Numerical experiments on different test cases
are carried out to show the performance of the methods.

7.2 formulation for implicit methods

Following equations (5.23)-(5.24) we write for the implicit Runge-Kutta method

U “ un ` ∆tAF ´ ∆tCpGϕ, (7.1)

with ϕ defined by

CpLϕ “ AMF ´
r1 ´ r1ptnq

∆t
, (7.2)

and Cp “ diagpc1, . . . , csq. This gives ϕ “ pCpq´1 Aψ. We have used the following
notation:

U “

¨

˚

˚

˝

U1
...

Us

˛

‹

‹

‚

, F “

¨

˚

˚

˝

F1
...

Fs

˛

‹

‹

‚

, ϕ “

¨

˚

˚

˝

ϕ1
...

ϕs

˛

‹

‹

‚

, r1 “

¨

˚

˚

˝

r1pt1q
...

r1ptsq

˛

‹

‹

‚

, (7.3)

and we have written M instead of Is b M, G instead of Is b G, etc. The size of these
matrices should be clear from the context. By using ϕ instead of ψ equation (7.2)
resembles equation (5.7), and the total gradient matrix is block-diagonal. In terms
of ϕ a single Lagrange multiplier ϕi makes each velocity field Ui divergence-free,
while in terms of ψ a sum of Lagrange multipliers would be required.

We note that, in contrast to the explicit methods discussed in chapter 6, implicit
methods can have c1 “ 0 (e.g. methods based on Lobatto quadrature) so that Cp is
singular. In that case we define a new pressure-like variable ρ “ Cpϕ and equations
(7.1)-(7.2) can be written without the c coefficients.

Once the stage values Ui are determined, un`1 follows by introducing the Lag-
range multiplier ϕn`1 and rewriting equation (5.13) as the following equivalent
uncoupled system:

ûn`1 “ un ` ∆t
s

ÿ

i“1

biFi, (7.4)

Lϕn`1 “

s
ÿ

i“1

pbi MFiq ´
r1ptn`1q ´ r1ptnq

∆t
, (7.5)

un`1 “ ûn`1 ´ ∆tGϕn`1. (7.6)
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This projection of ûn`1 onto the space of divergence-free velocity fields is known as
a projected Runge-Kutta method [7, 63]. It leads to the ‘classical’ order of accuracy
of the Runge-Kutta method (the accuracy for ODEs), as will be detailed in the next
section. An alternative to this projection step is described by Jay [79], but requires
the solution of a larger system of coupled non-linear equations, and is therefore not
considered here.

There are two important cases for which the additional projection step can be
avoided, making the solution of the Poisson equation (7.5) unnecessary:

• If the implicit method is stiffly accurate, i.e., asi “ bi and cs “ 1, then un`1 “

Us, ϕn`1 “ ϕs and the last projection step is redundant. This is for example
the case for the Radau IIA, Lobatto IIIA and IIIC methods.

• If A is invertible and the boundary conditions r1ptq are not a function of time,
ϕn`1 can be expressed as a linear combination of ϕ’s, so that a Poisson solve
for ϕn`1 (equation (7.5)) is not necessary. The equation for un`1 then reads

un`1 “ un ` bT A´1pU ´ unq, (7.7)

which satisfies the divergence-free constraint. In practice we therefore use for-
mulation (7.7) instead of (7.4) and in case of unsteady boundary conditions
equation (7.7) should be read for ûn`1 and the additional projection is per-
formed. This formulation also saves an additional evaluation of FpUiq when
the nonlinear iterative process has converged.

Well-known examples of implicit Runge-Kutta methods are methods based on
high-order quadrature formulas (like the Gauss, Lobatto and Radau methods, see
e.g. [41, 63]), and (single) diagonally implicit Runge-Kutta ((S)DIRK) methods, which
have zeros in the upper triangle of the Butcher tableau. Each of these methods has
certain advantages for integrating the incompressible Navier-Stokes equations. The
Gauss methods, for example, have the highest possible order (p “ 2s) given a certain
number of stages; a well-known member is the implicit midpoint method (s “ 1,
p “ 2). On the other hand, certain Lobatto and Radau methods have the advant-
age that they are stiffly accurate (asi “ bi), which is an important property for
differential-algebraic equations [7, 63]: (i) it avoids the additional projection step
mentioned above, and (ii) it leads to L-stable methods (provided that A is non-
singular). L-stable methods are robust, give stable results for problems at any Reyn-
olds number, and damp perturbations that originate from rough initial or boundary
conditions. The (S)DIRK methods have the advantage that the stages of the Runge-
Kutta method can be solved sequentially. The advantage of energy-conserving (and
time-reversible) methods were already outlined in section 2.1. In our opinion, an
ideal method would combine all these properties, resulting in a high-order, energy-
conserving, time-reversible, stiffly-accurate/L-stable (S)DIRK scheme.

In the next sections we formulate the order conditions for implicit Runge-Kutta
methods and the conditions for energy conservation, time-reversibility and L-sta-
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bility. The W-transformation of Hairer and Wanner [63] will appear in this context
and is therefore summarized in appendix B.1.

7.3 order considerations

The order conditions for the local error of Runge-Kutta methods can be obtained
by using Butcher’s analysis based on trees as introduced in section 6.2. For high-
order methods, say order higher than 4, it becomes cumbersome to derive methods
that satisfy these (non-linear) conditions. For implicit Runge-Kutta methods one
can fortunately make use of the simplifying conditions (5.16)-(5.18) and a theorem
of Butcher [24]: If A satisfies Bppq, Cpηq, Dpζq with p ď η ` ζ ` 1 and p ď 2η ` 2,
then the method is of order p. However, there are cases in which this ‘classical’ or
‘ODE’ order of accuracy is not obtained. We group these in three categories.

Firstly, in case of very stiff ODEs order reduction occurs if a method is not stiffly
accurate [63, 25, 8]. The stage order η of the method then determines the conver-
gence of the error, instead of the classical order. The value of the linear stability
function Rpzq at infinity determines the convergence: if Rp8q “ 0 (L-stable meth-
ods) or Rp8q “ ´1 (e.g. Gauss with s odd), the global error behaves as Op∆tη`1q,
whereas for methods with Rp8q “ 1 (e.g. Gauss with s even) the global error be-
haves as Op∆tηq [25]. This effect will be illustrated in section 7.8.3.

Secondly, order reduction can occur if index 2 DAEs are considered instead of
ODEs. In some sense this is related to the order reduction for very stiff ODEs,
by regarding the divergence-free constraint (3.1) as an infinitely stiff equation. For
explicit methods we showed in chapter 6 that no order reduction occurs for the
velocity, up to and including order 4, if the mesh is not moving in time. For implicit
methods such an analysis is not necessary; no order reduction occurs according to a
number of theorems for which we refer to Hairer and Wanner [63] (Theorems 4.12,
5.10, 5.13). On the other hand, the pressure suffers in general from order reduction,
like in the explicit case. This will be detailed in section 7.6. Convergence of the global
error follows from Theorems 4.4 and 4.9 in [60], which require invertibility of the
A-matrix and consistency of the initial values.
We note that recently implicit Runge-Kutta methods have been applied to the in-
compressible Navier-Stokes equations by Montlaur et al. [115]. In that work the
Gauss methods are dismissed as useful ‘because they present higher order reduc-
tion [than Radau] when applied to DAEs with respect to ODEs’. This is a misconcep-
tion: the Gauss methods keep their ODE accuracy when projected Runge-Kutta methods are
used [63]. In section 7.8 this will be supported by numerical experiments.

Thirdly, order reduction can occur upon simultaneously refining mesh and time
step combined with time-dependent inflow boundary conditions, due to so-called
‘space-time errors’. This phenomenon will not be investigated here (for the same
reasons mentioned in section 6.2.6).
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7.4 energy conservation and time reversibility

7.4.1 Energy conservation

In this section we derive conditions for the coefficients of the Butcher tableau such
that the resulting Runge-Kutta method is energy-conserving. In all cases we con-
sider inviscid flow (ν “ 0) and periodic boundary conditions. The monotonicity
property of the fully continuous equations, equation (2.23), is shared by the semi-
discrete system of equations (5.1)-(5.2):

}uptq} ď }upt0q}, t ě t0, (7.8)

due to properties (4.76)-(4.78). Equality holds in case ν “ 0. For the fully discrete
equations, this monotonicity or energy-conservation property is investigated by tak-
ing the inner product of the fully discrete momentum equation, equation (5.13),
with itself. First we write equation (5.13) with r1 “ 0 as

un`1 “ un ` ∆t
s

ÿ

i“1

biPFi, (7.9)

where P “ I ´ GL´1M is a projection operator that projects velocity fields onto the
space of divergence-free velocity fields. Taking the norm of un`1 and substituting
the equation for the stages leads to

}un`1}2 “ }un}2 ` 2∆t
s

ÿ

i“1

bi pPFi, Uiq ´ ∆t2
s

ÿ

i,j“1

pbiaij ` bjaji ´ bibjq
`

PFi, PFj
˘

. (7.10)

This is one of the key results of this chapter. Conservation of energy requires that the two
last terms vanish. The term pPFi, Uiq, is zero if pCpUiq, Ui, Uiq “ 0 and pGpi, Uiq “

´ppi, MUiq “ 0. For the last term to be zero the coefficients A and b from the
Runge-Kutta tableau should satisfy

eij ” biaij ` bjaji ´ bibj “ 0. (7.11)

Note that we define the energy ‘pointwise’ in time; at n, n ` 1, etc. Other definitions,
such as the average value over a time step, can also be employed and might lead to
different requirements on the coefficients of the Runge-Kutta method - this is the
subject of future work.

In the literature Runge-Kutta methods that satisfy E “ peijq “ 0 are known as
symplectic, since this condition is obtained when applying a Runge-Kutta method
to symplectic systems and requiring that the symplectic structure is preserved. In
general, symplectic methods are not conserving energy, but in the case of the incom-
pressible Navier-Stokes equations the energy is a quadratic invariant, and every
Runge-Kutta method that preserves quadratic invariants is a symplectic method
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[61]. To summarize: iff a method (i) satisfies equation (7.11), (ii) has a skew-sym-
metric convective operator (pCpUi, Uiq, Uiq “ 0), and (iii) has a pressure gradient
that does not contribute to the energy (pGpi, Uiq “ ´ppi, MUiq “ 0), then the total
kinetic energy is exactly conserved for inviscid flows:

}un`1}2 “ }un}2. (7.12)

For viscous flows the second term in (7.10) also contains the viscous contribution
pDUi, Uiq ď 0, and then equation (7.10) reads (for E “ 0)

}un`1}2 “ }un}2 ` 2∆t
s

ÿ

i“1

bipDUi, Uiq, (7.13)

assuming MUi “ 0. This is the discrete equivalent of equation (2.22).
Energy-conserving methods (E “ 0) are a particular example of algebraically

stable methods [63]: methods having a nonnegative definite E matrix and nonneg-
ative b coefficients. Such methods lead to energy-stable time-integration, for any
time step.

The energy-conservation condition (7.11) cannot be satisfied by explicit methods.
Implicit energy-conserving Runge-Kutta methods can be constructed with the W-
transformation of Hairer and Wanner [63], explained in appendix B.1, in particular
condition (B.6). This transformation shows that the Gauss methods are the methods
with the highest possible order (p “ 2s) that satisfy (7.11). For one order lower,
p “ 2s ´ 1, a one-parameter family of methods results, of which the Radau IB
and IIB methods [187] are two examples. For p “ 2s ´ 2 a two-parameter family
of methods results, which includes the Lobatto IIIE methods (sometimes denoted
by IIID) [33, 99]. Some examples are shown in table 7.1. Of particular interest are
diagonally-implicit energy-conserving methods, since the stages of the Runge-Kutta
method are uncoupled. For s “ p “ 2 there is a one-parameter family which reads

c1 c1 0

c1 ` 1
2 2c1

1
2 ´ c1

2c1 1 ´ 2c1

(7.14)

with c1 P p0, 1
2 q to keep the b coefficients positive. This family is recognized as the

implicit midpoint applied twice over intervals of size 2c1 and 1 ´ 2c1, and is limited
to second order; we call it DIRK E. As is indicated in appendix B.2, it is not possible
to construct algebraically stable or A-stable symplectic DIRK methods with p ą 2.

An alternative for constructing energy-conserving methods with the W-trans-
formation is to use the following transformation [188]

A˚ “ EpAq, (7.15)
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where E is such that

a˚
ij “

1
2

ˆ

aij ` bj

ˆ

1 ´
aji

bi

˙˙

, b˚
i “ bi, c˚

i “
ÿ

j

a˚
ij. (7.16)

In this way an energy-conserving method can be obtained from any existing Runge-
Kutta method. This does not necessarily lead to useful methods, because E is a non-
linear transformation, which in general changes the order of the method. However,
in case the original method A satisfies simplifying conditions Bppq, Cpηq and Dpζq,
then the transformed method EpAq satisfies Bppq, Cpξq and Dpξq, with ξ “ minpη, ζq

[188]. The transformation E relates certain quadrature methods. For example, the
Radau IIB methods follow by applying E on the Radau IIA methods and the Lobatto
IIIE methods follow from the Lobatto IIIC methods. These relations will be used to
construct additive Runge-Kutta methods in section 7.5.

In table 7.3 we list a number of energy-conserving methods, together with other
properties that will be discussed in subsequent sections.

1
2

1
2

1
(a) Gauss,

p “ 2

1
2 ´

?
3

6
1
4

1
4 ´

?
3

6
1
2 `

?
3

6
1
4 `

?
3

6
1
4

1
2

1
2

(b) Gauss, p “ 4

1
3

3
8 ´ 1

24

1 7
8

1
8

3
4

1
4

(c) Radau IIB, p “ 3

0 1
12 ´ 1

6
1
12

1
2

5
24

1
3 ´ 1

24

1 1
12

5
6

1
12

1
6

2
3

1
6

(d) Lobatto IIIE, p “ 4

Table 7.1: Examples of energy-conserving methods.

7.4.2 Time reversibility

Time reversibility is investigated by changing un`1 to ´un, un to ´un`1 and Ui “

un`ci to ´un`1´ci in equations (5.12)-(5.13) and checking if the resulting equations
are equivalent to the original ones. This leads to the following conditions [206, 61]:

aij ` as`1´i,s`1´j “ bj, (7.17)

bi “ bs`1´i, (7.18)

ci “ 1 ´ cs`1´i. (7.19)
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Runge-Kutta methods satisfying these conditions are called symmetric. In terms of
the permutation matrix P̂ they are written as A ` P̂AP̂ “ ebT , P̂b “ b, P̂c “ e ´ c,
where e “ p1, . . . , 1qT . Like the symplecticity condition, explicit Runge-Kutta meth-
ods cannot satisfy the symmetry conditions.

Implicit methods, on the other hand, can satisfy the symmetry conditions. For
s “ 1 there is one solution to these conditions, being the 1-stage Gauss method
(better known as the implicit midpoint method), see table 7.1a. For s “ 2 condition
(7.18) fixes the b-coefficients: b1 “ b2 “ 1

2 . Examples are the Gauss, Lobatto IIIA, IIIB
and IIIE methods, shown in tables 7.1a-7.1b, table 7.1d and 7.2a-7.2b. The 2-stage
Lobatto IIIA method is better known as the trapezoidal rule or Crank-Nicolson
method. General (higher order) symmetric methods can be constructed with the
W-transformation in a similar way as the energy-conserving methods, now by sat-
isfying condition (B.8). Table 7.3 lists for some methods whether they are symmetric
or not.

0 0 0

1 1
2

1
2

1
2

1
2

(a) Lobatto IIIA,
p “ 2

0 1
6 ´ 1

6 0
1
2

1
6

1
3 0

1 1
6

5
6 0

1
6

2
3

1
6

(b) Lobatto IIIB, p “ 4

Table 7.2: Examples of time-reversible methods.

The symmetry conditions do not imply stability, so it is of interest which sym-
metric methods are algebraically stable, i.e., have a nonnegative definite E matrix
and b ě 0. By using the X-matrix, introduced in appendix B.1, algebraic stability
requires that

Y “ X ` XT ´ e1eT
1 is nonnegative definite. (7.20)

From the W-transformation we know that symmetric methods have an X-matrix
with a zero diagonal (except for x1,1 “ 1

2 ). As a result Y is a symmetric matrix with
a zero diagonal, and consequently it cannot be nonnegative definite, except if it is
completely zero. Since Y “ WTEW this implies that of all symmetric methods, only the
energy-conserving (E “ 0) ones are algebraically stable. A similar conclusion was drawn
in [45], where it was stated that energy conservation is a practical requirement
for schemes to be time-reversible. However, algebraic stability is a strong stability
requirement and in many situations A-stability suffices, so this ‘practical’ require-
ment might be too restrictive. An important example of an A-stable time-reversible
method which is not energy-conserving is the Crank-Nicolson method (member of
the Lobatto IIIA family). In fact this method is conserving another quantity (see e.g.
[74]),

}un`1}2 `
1
4

∆t2}PFn`1}2 “ }un}2 `
1
4

∆t2}PFn}2, (7.21)
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with PFn “ Fn ´ GL´1MFn “ Fn ´ Gpn (and similarly for n ` 1). This statement is
however not as strong as energy conservation, because }un`1}2 can grow in time
due to the contribution of }PFn}2.

Type Energy- Time- Stiffly L-stable Alg. Order η ζ

cons. rev. acc. stable

Gauss Y Y N N Y 2s s s
Rad. IIA N N Y Y Y 2s ´ 1 s s ´ 1

Rad. IIB Y N N N Y 2s ´ 1 s ´ 1 s ´ 1

Lob. IIIA N Y Y N N 2s ´ 2 s s ´ 2

Lob. IIIB N Y N N N 2s ´ 2 s ´ 2 s
Lob. IIIC N N Y Y Y 2s ´ 2 s ´ 1 s ´ 1

Lob. IIIE(D) Y Y N N Y 2s ´ 2 s ´ 1 s ´ 1

DIRK E Y Y N N Y 2 1 1

Table 7.3: Properties of implicit Runge-Kutta methods investigated in this work.

7.4.3 Other properties

In the previous sections we derived the conditions for energy conservation and time
reversibility and we mentioned some high-order methods that satisfy these condi-
tions, see table 7.3. Other desirable properties, such as L-stability and algebraic sta-
bility have also been listed in this table. The table reveals that all energy-conserving
or time-reversible method are not stiffly accurate or L-stable (with the exception of
the Lobatto IIIA methods which have singular A). This is not a coincidence. It can
be shown that energy-conserving and time-reversible methods have R “ 1 on the
imaginary axis of the stability domain by applying them on a linear test equation.
Since the stability function Rpzq is a rational function, it attains the same value when
approaching infinity on either the negative real axis or the imaginary axis, and con-
sequently |Rp8q| “ 1. Energy-conserving or time-reversible methods can therefore
not satisfy the condition Rp8q “ 0, necessary for L-stability. An alternative way of
seeing this, which provides insight in how to construct L-stable methods, is to write
the stability function as

Rpzq “
Det pI ´ zQq

Det pI ´ zAq
, (7.22)

where Q “ A ´ ebT . L-stable methods require Q to be singular. Energy-conserving
and time-reversible methods have Q “ ´B´1 AT B and Q “ ´P̂AP̂ (note B “

diagpb1, . . . , bsq), respectively, meaning that in both cases the eigenvalues of Q are
´1ˆ the eigenvalues of A. The degree of the numerator and denominator of Rpzq

are therefore the same, so such methods cannot be L-stable.
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This negative result leads us to consider additive Runge-Kutta methods, where the
convective and diffusive terms are treated with different tableaux, in order to arrive
at methods that possess energy-conservation, time-reversibility and L-stability.

7.5 new additive runge-kutta methods

The conditions for energy conservation and time reversibility are derived by con-
sidering time integration of the non-linear convective terms. As such, it is not sur-
prising that these methods do not have ideal properties for integrating the diffusive
terms. It seems therefore logical to take two different Runge-Kutta methods for the
convective and the diffusive terms. We propose to use additive Runge-Kutta methods
(ARK), a class of methods that includes the well-known implicit-explicit (IMEX)
Runge-Kutta methods [9]. In implicit-explicit methods stiff terms (such as diffusion
terms) are handled implicitly, whereas other terms (such as non-linear convective
terms) are handled explicitly, both with a different Butcher tableau. We keep the
idea of two different Butcher tableaux, A and Â, but we take all terms implicitly:

Ui “ un ` ∆t
s

ÿ

j“1

`

aijPFj ` âijPF̂j
˘

` GL´1pr1ptiq ´ r1ptnqq, (7.23)

un`1 “ un ` ∆t
s

ÿ

i“1

´

biPFi ` b̂iPF̂i

¯

` GL´1pr1ptn`1q ´ r1ptnqq. (7.24)

The diffusive terms are denoted by F and the convective terms by F̂. We require
that the Butcher tableau for the convective terms, Â, is energy-conserving. The
Butcher tableau for the diffusive terms, A, is chosen such that an L-stable method
results, so that stiff problems are damped sufficiently. A natural way to obtain such
properties is to use an algebraically stable and stiffly accurate method for A and
its energy-transformed counterpart Â “ EpAq for the convective terms. From an
implementation point of view, the solution of equations (7.23)-(7.24) is not more ex-
pensive than for the ‘standard’ Runge-Kutta method (which is a special case of an
ARK with A “ Â), except that in case of steady boundary conditions for the con-
tinuity equation we cannot employ formulation (7.7); we always need an additional
Poisson solve to make un`1 divergence-free.

In the next sections we will investigate the order conditions and stability proper-
ties of such ARK methods, and subsequently we will propose three new classes of
methods: one based on Radau quadrature, one based on Lobatto quadrature, and
one which is of DIRK type (see table 7.4).

7.5.1 Order conditions

The transformation E leaves the b-coefficients unchanged, leading to b “ b̂. It is also
desirable that the c-coefficients remain unchanged. Firstly, having b “ b̂ and c “ ĉ
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means that no additional order conditions (so-called coupling conditions) appear
for orders less than four [85, 123], and for higher orders the number of additional
order conditions is much smaller than for the case c ‰ ĉ and b ‰ b̂. Secondly,
c “ ĉ is required to evaluate the divergence-free constraint MUi “ r1ptiq. We use the
following theorem to show when c “ ĉ.

Theorem 7.5.1. If a Runge-Kutta method is transformed into an energy-conserving method
according to (7.16), then the c-coefficients remain unchanged if the original method satisfies
Dp1q.

Proof. Let the original method be given by A, and the transformed method by Â “

EpAq. Then we have

ĉi “

s
ÿ

j“1

âij “
1
2

s
ÿ

j“1

aij `
1
2

s
ÿ

j“1

bj

ˆ

1 ´
aji

bi

˙

“
1
2

ci `
1
2

´
1
2

1
bi

s
ÿ

j“1

bjaji, (7.25)

which can be written as
s

ÿ

j“1

bjaji “ bip1 ` ci ´ 2ĉiq. (7.26)

Condition Dp1q can be written as

s
ÿ

j“1

bjaji “ bip1 ´ ciq. (7.27)

Therefore, if a method satisfies both (7.26) and (7.27), then ci ´ 2ĉi “ ´ci, so ĉi “

ci.

By considering an additive Runge-Kutta method as a partitioned Runge-Kutta
method (see [9]), the order of the pair is [63, 188]

min pp, 2ξ ` 1q , (7.28)

where ξ “ minpη, ζq, and η and ζ correspond to method A. It remains to be proven
that the order of the additive Runge-Kutta method is not affected when the method
is applied to DAEs instead of ODEs. This seems to be an open question, but the-
oretical [78] and numerical results, e.g. [94], indicate that, like for the standard
Runge-Kutta methods, no order reduction occurs for the velocity in case of the
incompressible Navier-Stokes equations. We will also confirm this with numerical
experiments in section 7.8.

7.5.2 Stability

The algebraic stability properties of this new class of methods are investigated by as-
sessing the energy conservation properties of the method, similar to equation (7.10).
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Although both A and Â are chosen to be algebraically stable, their combination in
an ARK method requires additional conditions to be satisfied. The expression for
}un`1}2 reads, after employing equations (7.23)-(7.24) with b “ b̂:

}un`1}2 “ }un}2 ` 2∆t
s

ÿ

i“1

bi
`

pUi, PFiq ` pUi, PF̂iq
˘

´ ∆t2

¨

˝

s
ÿ

i,j“1

eijpPFi, PFjq `

s
ÿ

i,j“1

êijpPF̂i, PF̂jq ` 2
s

ÿ

i,j“1

ẽijpPFi, PF̂jq

˛

‚, (7.29)

where eij is given by (7.11), êij is given by (7.11) with a replaced by â, and ẽij is given
by

ẽij “ bi âij ` bjaji ´ bibj. (7.30)

Since Â is energy-conserving we have Ê “ 0. In appendix B.3.1 we proof that as a
result the additive Runge-Kutta method cannot be algebraically stable - even though
the two constituents that form the method are in itself algebraically stable.

We therefore investigate a weaker (linear) stability concept by applying an addit-
ive Runge-Kutta method to the linear scalar test equation [9]

9u “ pλ ` λ̂qu, (7.31)

where λ is an eigenvalue of the diffusion operator (λ P R, λ ď 0), and λ̂ an ei-
genvalue of the (linearized) convection operator (λ̂ P iR). When an additive Runge-
Kutta method is applied to (7.31), the expression for the amplification factor R
becomes [85, 29]:

Rpz, ẑq ”
un`1

un
“

Det
`

I ´ zA ´ ẑÂ ` pz ` ẑqebT˘

Det
`

I ´ zA ´ ẑÂ
˘ “

Npz, ẑq

Dpz, ẑq
, (7.32)

where z “ λ∆t, ẑ “ λ̂∆t, I is the s ˆ s identity matrix and e is p1, . . . , 1qT . The
requirement for linear stability, which we will loosely call ‘A-stability’, is

|Rpz, ẑq| ď 1 for z ď 0. (7.33)

As for algebraic stability, A-stability cannot be concluded from the A-stability of
the two methods, and has to investigated for each method separately. On the other
hand, the L-stability of A is inherited by the additive Runge-Kutta method, see
appendix B.3.2.

7.5.3 Radau IIA/B pair

The Radau IIA methods are a suitable choice for A, because they give the highest
possible order (2s ´ 1) combined with stiff accuracy (and therefore L-stability). For
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Type Energy- Time- L-stable Alg. Order

cons. rev. stable

Radau IIA/B Y N Y N 2s ´ 1

Lobatto IIIC/E Y Y Y N 2s ´ 2

DIRK L/E Y Y Y N 2

Table 7.4: Properties of some implicit additive Runge-Kutta methods.

Â we then use EpAq, the Radau IIB methods, and their combination results in a
method that has many of the required properties (table 7.4): it is of order 2s ´ 1,
energy-conserving, L-stable, and has c “ ĉ and b “ b̂. We note that, instead of
using equation (7.28) it is also possible to evaluate the additional order conditions
originating from the use of additive methods [85]. For s “ 2 there are no additional
order conditions, for s “ 3 there are 16 additional conditions, and they are indeed
satisfied by the Radau IIA/B pair.

Evaluating (7.32) for the new scheme results in

Rpz, ẑq “
12 ` 6ẑ ` 4z ` zẑ ` ẑ2

12 ´ 8z ´ 6ẑ ` 2z2 ` 3zẑ ` ẑ2 . (7.34)

This amplification factor is shown in figure 7.1b. A-stability can be proven as fol-
lows. Let ẑ “ αi, z “ β, then the requirement for A-stability can be written as

|Rpβ, αiq|2 ď 1 for β ď 0, (7.35)

which becomes
´ βpβ ´ 6qpβ2 ´ 2β ` α2 ` 12q ă 0. (7.36)

This expression is indeed satisfied for all α and β ă 0 and we can conclude that the
two-stage Radau IIA/B method is A-stable. For pure convection problems we have
z “ 0 and (7.34) reduces to

Rpz “ 0, ẑq “
12 ` 6ẑ ` ẑ2

12 ´ 6ẑ ` ẑ2 , (7.37)

so |Rpz “ 0, ẑq| “ 1, and there is no damping on the imaginary axis, as expected.
One recognizes the stability function for Radau IIB which is in fact the same as
the stability function for the two-stage Gauss method. Consequently, the Radau IIB
method is fourth order accurate for linear equations, instead of third order. For
diffusion dominated problems where z Ñ ´8, we find (for fixed ẑ):

lim
zÑ´8

Rpz, ẑq “ 0. (7.38)

For the fifth order, 3-stage method, A-stability can be proven in a similar way.
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1
3

5
12 ´ 1

12

1 3
4

1
4

3
4

1
4

(a) ARadIIA

1
3

3
8 ´ 1

24

1 7
8

1
8

3
4

1
4

(b) ARadIIB “

EpARadIIAq

Table 7.5: Energy-conserving, L-stable, 2-stage, 3rd order Radau IIA/B pair.

7.5.4 Lobatto IIIC/E pair

Another additive Runge-Kutta method combining stiff accuracy and energy conser-
vation can be constructed by applying the transform E on the Lobatto IIIC methods,
leading to the IIIE methods. These are of lower order (2s ´ 2) than the Radau pair,
but keep the time-reversibility property for inviscid flows. We will investigate nu-
merically if this additional property outweighs the loss in order compared to the
Radau pair. From the one-parameter family of stiffly accurate Lobatto methods that
are of order 2s ´ 2 [99], the Lobatto IIIC method is the only one that satisfies Dp1q

for s “ 2 (necessary for c “ ĉ according to theorem 7.5.1). The degree of the nu-
merator of the stability function R is at most s ´ 2 for the Lobatto IIIC method [63],
leading to a very fast decay along the negative real axis of the stability domain, and
making them very suitable for stiff problems. Table 7.6 shows the Butcher tableaux
for the 2-stage methods.

A-stability for the 2-stage method follows by calculating the stability function as
before:

Rpz, ẑq “
4 ` 2ẑ ` ẑ2 ` zẑ

4 ´ 4z ´ 2ẑ ` 2z2 ` 3zẑ ` ẑ2 , (7.39)

shown in figure 7.1c. |Rpβ, αiq|2 ď 1 leads to

´ βp´2 ` βqpβ2 ´ 2β ` α2 ` 4q ď 0, (7.40)

which is indeed satisfied for β ď 0. For the 3-stage method, A-stability follows in a
similar fashion.

We note that, apart from the Lobatto IIIC/E method, other combinations of Lob-
atto methods can lead to interesting methods. For example, the Lobatto IIIA/B pair
has the property that Ẽ “ 0, but is not energy-conserving in the inviscid limit. We
refer to [92] for an extensive discussion on additive Lobatto methods.

7.5.5 DIRK pair

We mentioned before that the maximum order for an energy-conserving DIRK
method is two, and for a two-stage method there is one free parameter c1, see equa-
tion (7.14). We combine this method with a two stage, second order L-stable DIRK
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0 1
2 ´ 1

2

1 1
2

1
2

1
2

1
2

(a) ALobIIIC

0 1
4 ´ 1

4

1 3
4

1
4

1
2

1
2

(b) ALobIIIE “

EpALobIIICq

Table 7.6: Energy-conserving, time-reversible, L-stable, 2-stage, 2nd order, Lobatto IIIC/E
pair.

method to arrive at an additive Runge-Kutta method of DIRK type which combines
energy conservation, time reversibility and L-stability. Again, we look for a method
with c “ ĉ, which implies b “ b̂ due to the second order coupling condition. When
we furthermore adhere to convention (5.15), the condition for L-stability (namely a
singular Q-matrix), leads to the following family of L-stable DIRK methods:

c1 c1 0

c1 ` 1
2

1
2

c1p2c1´3q
c1´1

1
2

2c1´1
c1´1

2c1 1 ´ 2c1

(7.41)

In contrast to the previous tableaux for the diffusive terms, A is not algebraically
stable, because E is not nonnegative definite. It is not possible to choose c1 such
that both the convective and diffusive tableau are of SDIRK type. In the sequel we
take c1 “ 1

4 , so that for pure convection problems the method is of SDIRK type; the
tableaux are then given in table 7.7. Note that here Â ‰ EpAq. The amplification
factor is given by

Rpz, ẑq “
48 ` 20z ` 24ẑ ` 3zẑ ` 3ẑ2

p´4 ` z ` ẑqp´12 ` 4z ` 3ẑq
, (7.42)

and is shown in figure 7.1d. The method is A-stable, because

´ βp´12 ` βqpβ2 ´ 2β ` 24 ` α2q ď 0 (7.43)

is satisfied for β ď 0.

1
4

1
4 0

3
4

5
12

1
3

1
2

1
2

(a) ADIRK L

1
4

1
4 0

3
4

1
2

1
4

1
2

1
2

(b) ADIRK E

Table 7.7: Energy-conserving, time-reversible, L-stable, 2-stage, 2nd order DIRK pair.
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7.5.6 Summary

To summarize, we have a hierarchy of methods, listed in table 7.4. The Gauss meth-
ods have highest possible order, p “ 2s, but lack L-stability. Sacrificing one order,
p “ 2s ´ 1, leads to the additive Radau IIA/B methods, which have both energy con-
servation and L-stability. Sacrificing another order, p “ 2s ´ 2, leads to the additive
Lobatto IIIC/E methods, which have energy conservation, time reversibility and
L-stability. Dropping the requirement on algebraic stability of the diffusive tableau
leads to an additive DIRK L/E method, also energy-conserving, time-reversible and
L-stable. These methods will be numerically tested in section 7.8, together with the
Lobatto IIIA (Crank-Nicolson) method, because this is a widely used method and
an example of a method which is time-reversible but not energy-conserving.

All these methods are two-stage methods, with the exception of the 1-stage Gauss
method. The stability domains of the methods, |Rpβ, αiq| ď 1, are shown in figures
7.1a-7.1d. The stability domain of the 2-stage Lobatto IIIA method (Crank-Nicolson)
coincides with the Gauss 1-stage method (implicit midpoint) and can be found in
any standard textbook, e.g. [63]. One can observe that the proposed methods satisfy
both |R| “ 1 on the imaginary axis and |R| “ 0 for β Ñ ´8. However, when
compared with the exact stability function (figure 7.1e), or with a stiffly accurate
method such as Radau IIA (figure 7.1f), the proposed methods possess a much
slower decay of R to zero along the negative real axis.

We note that all additive methods considered here have a region |R| ă 1 in the
right half of the complex plane. For example, equation (7.36) is also satisfied for β ě

6, and equation (7.43) for β ą 12. This is an undesirable property when one wants
to integrate physically ‘unstable’ phenomena. However, compared to the ‘original’
stiffly accurate / L-stable methods, such as the Radau IIA method depicted in figure
7.1f, the behavior is much better. From the methods considered here the Gauss
methods are the only ones that have |R| ą 1 in the entire right half of the complex
plane.

7.6 the accuracy of the pressure

The velocity at the new time step follows from the sequence (7.4)-(7.6). The ‘pres-
sure’ ϕn`1 necessary to obtain a divergence-free un`1 is only a first order approx-
imation to pn`1, as was explained in section 5.3.2. A higher order accurate pn`1
can be computed by solving an additional Poisson equation, equation (6.26). The
resulting pressure has the same temporal accuracy as the velocity field un`1. If
9r1ptq is not available or not well-defined, or to avoid the additional Poisson equa-
tion, one can construct higher order approximations by making linear combinations
of the stage values ϕi. For the Runge-Kutta methods based on Gauss, Radau and
Lobatto quadrature we apply the techniques mentioned in [63, 60] to the Navier-
Stokes equations, and subsequently we extend and unify these techniques in a new
approach for additive Runge-Kutta methods proposed in section 6.3.2. In contrast
to what is reported for explicit methods in that section, for implicit methods and
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(a) Gauss - 2 stage
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(b) Additive Radau II A/B - 2 stage

 

 

−15 −10 −5 0 5 10

−6

−4

−2

0

2

4

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Additive Lobatto III C/E - 2 stage
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(d) Additive DIRK L/E - 2 stage
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(e) Exact

 

 

−15 −10 −5 0 5 10

−6

−4

−2

0

2

4

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) Radau IIA - 2 stage

Figure 7.1: Stability regions |Rpβ, αiq| ď 1.



7.6 the accuracy of the pressure 129

steady boundary conditions for the continuity equation it is not possible to obtain a
pressure of the same order as the velocity field without the additional Poisson solve
mentioned above.

7.6.1 Radau IIA, Lobatto IIIC

If A is non-singular one can write [63]:

pn`1 “ pn `

s
ÿ

i,j“1

biωijpψj ´ pnq “ Rp8qpn `

s
ÿ

i,j“1

biωijψj, (7.44)

where ψ “ A´1Cpϕ and ωij are the entries of A´1. For the Radau IIA and Lobatto
IIIC methods this gives an approximation of order s and s ´ 1, respectively, corres-
ponding to their stage orders. They both feature stiff accuracy and a non-singular
A, leading to Rp8q “ 0, so pn`1 is not depending on pn and the global error equals
the local error. Furthermore, since

bT “

´

0 . . . 0 1
¯

A, (7.45)

we have

pn`1 “ ψs “

s
ÿ

i“1

ωsiciϕi. (7.46)

In case of Lobatto IIIC ciϕi is replaced by ρi since c1 “ 0.

7.6.2 Gauss

For the Gauss methods |Rp8q| “ 1 and (7.44) gives an approximation of order
s ´ 1 (s odd) or s ´ 2 (s even), which is unsatisfactory, especially for the 1- and
2-stage methods under consideration. An alternative is to construct a polynomial
vptq that interpolates the ψi values. Evaluating vptq at tn`1 then gives an s-th order
approximation to the pressure [63, 6]:

pn`1 « vptn`1q “

s
ÿ

i“1

ψi

s
ź

j“1,j‰i

1 ´ cj

ci ´ cj
. (7.47)

With this expression the pressure pn`1 is independent of pn, like for L-stable meth-
ods, and the global error is therefore the same as the local error.

7.6.3 Lobatto IIIA

The Lobatto IIIA methods have c1 “ 0, so the approach for the Gauss methods
cannot be applied. Furthermore, A is singular, hence the approach for the Radau IIA
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and Lobatto IIIC methods also fails. However, since the method is stiffly accurate
and satisfies c1 “ 0, we can take pn`1 “ ψs. By defining Ã “ A2:s,2:s (which is non-
singular) and ω̃ij “ pÃ´1qij the entries of its inverse, ψ can be written in terms of ρ
as

ψi “

s
ÿ

j“2

ω̃ijpρj ´ aj1ψ1q, (7.48)

where ψ1 “ pn. In this case pn`1 depends on pn and the order is s (s even) or s ´ 1
(s odd) [60].

7.6.4 A unified approach

In this section we compare the results obtained above with the approach outlined
for explicit methods in section 6.3.2. This method is based on the reconstruction of
the point value pn`1 from the average pressure values ϕi. If a Runge-Kutta method
has at least η stages that satisfy Cipηq, then it is possible to obtain an Op∆tηq accurate
approximation to pptn`1q by combining the ϕi values. For the implicit methods
under consideration we have Cpηq (holding for all stages), with η “ s or s ´ 1
(except the DIRK methods), so such a construction is always possible. pn`1 then
follows as (equation (6.45)):

pn`1 “
ÿ

kPK

ϕkck∆t 9ℓkptn`1q, (7.49)

where ℓkptq is given by (6.42). The set K consists of (at least) η stages, which have to
be chosen such that the ck are distinct and nonzero.

Equation (7.49) appears to be equivalent to the formulations above for the Radau
and Gauss methods:

• The Gauss methods satisfy Cpsq, so η “ s and K “ t1, 2, . . . , su. First we evalu-
ate our approach, equation (7.49), for s “ 2:

pn`1 “ ϕ1
2 ´ c2

c1 ´ c2
` ϕ2

c2 ´ 2
c1 ´ c2

. (7.50)

Secondly, we rewrite (7.47) by interpreting Cpsq, see equation (5.17), as an
equation for the a-coefficients in terms of the c-coefficients. ψ “ A´1Cpϕ can
then be completely expressed in terms of the c-coefficients, and when evalu-
ating the resulting expression, equation (7.50) is obtained. This also holds for
s “ 3, and we conjecture that our approach, equation (7.49), is equivalent to
equation (7.47) for any s.

• For the Radau methods we proceed in a similar way. We evaluate (7.50) for
cs “ 1 and compare with (7.46), evaluated with Cpsq and cs “ 1. Both formu-
lations are again identical for s “ 2 and s “ 3.
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For the Lobatto IIIC methods our approach (7.49) differs from (7.46). Since Cps ´ 1q

and c1 “ 0 are satisfied, we take K “ t2, . . . , su, and (7.49) boils down to the follow-
ing first order approximation:

pn`1 “
ρ2

c2
, (7.51)

while (7.46) gives

pn`1 “ ω21ρ1 ` ω22ρ2, (7.52)

which is also of first order. It turns out, somewhat surprisingly, that ω22 “ 1
c2

. The
presence of the ρ1 term in (7.52) is therefore not necessary to obtain the required
order of accuracy. For s “ 3 a similar phenomenon occurs.

Lastly, we compare the pressure update for the Lobatto IIIA method with our
approach. Equation (7.48) reads, for s “ 2:

pn`1 “
1

a22
pρ2 ´ a21 pnq, (7.53)

which is a second-order accurate approximation. This is the only method where pn
appears in the formulation, and the only method for which our approach gives a
lower order: first order instead of second order for s “ 2.

An advantage of approach (7.49) is that it can be directly applied to additive
Runge-Kutta methods, because it only depends on the c-coefficients, which are the
same for the convective and diffusive tableaux. Table 7.8 summarizes the different
methods. Although the Radau IIA/B method satisfies only Cps ´ 1q instead of Cpsq,
we still take the same approach as for Radau IIA, so that the Radau IIA method is
simply a special case of the Radau IIA/B method. For the Lobatto IIIC/E pair we
can directly use the formulation for Lobatto IIIC. The DIRK pair satisfies Cp1q and
the pressure is therefore limited to first order; we simply take

pn`1 “ ϕ2. (7.54)

Type s “ 2 general s Order

Gauss, Radau IIA (7.50) (7.49) s
Radau IIA/B (7.50) (7.49) s ´ 1

Lobatto IIIC/IIIE (7.51) (7.49) s ´ 1

Lobatto IIIA (7.53) (7.48) s/s ´ 1 (even/odd)

DIRK (7.54) - 1

Table 7.8: Computation of the pressure for implicit (additive) Runge-Kutta methods.
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7.7 implementation issues

7.7.1 System of equations

Equation (5.12) represents a full, implicit system of nonlinear equations. Introducing
the iteration counter k we write for the stage values

Uk`1 “ Uk ` ∆Uk. (7.55)

One iteration of Newton’s method leads to the following linear system of equations:
«

Tk ∆tCpG

M 0

ff «

∆Uk

∆ϕk

ff

“ dk, (7.56)

where

dk “

«

dk
u

dk
ϕ

ff

“

«

un ´ Uk ` ∆tAFk ´ ∆tCpGϕk

´MUk ` r1

ff

, Tk “ I ´ ∆tAJk. (7.57)

J “ BF
BU represents the Jacobian of the system. With full Newton the exact Jacobian

is evaluated at each iteration step. We stress again that by using ϕ instead of ψ, M
and G are block-diagonal matrices (Is b M, Is b G). At each time step the non-linear
system is solved until an absolute tolerance δa or relative tolerance δr on the residual
is satisfied:

}dk}8 ď δa or }dk}8 ď δr}d1}8. (7.58)

The presence of the convective terms in the Jacobian leads to an asymmetric
system, which moreover changes every iteration, making the solution of the system
expensive. A possible method to solve the system is the Newton-Krylov method
proposed by Pereira et al. [125]; a general overview of methods is given in [16]. In
the results presented in this chapter we have used small test problems for which the
use of a direct solver was most efficient. However, to make the approach suitable
for large-scale computations, we will give some directions for improvement.

One can use simplified Newton instead of full Newton: take the Jacobian at the
start of each time step and keep it constant during the iterative process. If a direct
method is used, one can even compute the LU-decomposition of I ´ ∆tAJpU0q and
use it for all iterations. The convergence of the residual, given a sufficiently accurate
starting value, is then linear instead of quadratic. A starting value can be obtained
by fitting a polynomial of degree s ` 1 through the values of Ui of the previous time
step and then extrapolate this to the stages of the new time step [63]. This provides
in general an Op∆tηq approximation to Uk.
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7.7.2 Splitting

Another technique which can significantly reduce computational costs is splitting
the solution of velocity and pressure. Such a splitting can be seen as a block LU-
decomposition of matrix (7.56) [129]:

«

Tk G

M 0

ff

“

«

Tk 0

M ´MpTkq´1G

ff «

I pTkq´1G

0 I

ff

, (7.59)

so one iteration of the nonlinear method is equivalent to the following sequence:

Tk∆Ûk “ dk
u, (7.60)

MpTkq´1G∆ϕk “ M∆Ûk ´ dk
ϕ, (7.61)

∆Uk “ ∆Ûk ´ pTkq´1G∆ϕk. (7.62)

This factorization does not introduce a splitting error yet. Although the large ori-
ginal matrix is not present in the formulation, the explicit computation of pTkq´1,
necessary in the second equation (note that M and G are not square), makes the
approach unattractive in practice. When pTkq´1 in (7.61)-(7.62) is replaced by an ap-
proximation pT̂kq´1 one obtains an approximate factorization as proposed by Perot
[129]. The simplest choice is to take the first order approximation Tk “ I, which
leads to a scheme similar to fractional step or projection methods. Higher order
methods follow by more accurate approximations of pTkq´1, but result in a matrix
MpTkq´1G which is not a Laplacian anymore. In any case, a splitting error is intro-
duced, which destroys the energy-conserving property of the method (if present).
This is due to the fact that the intermediate velocity field Û does not satisfy the di-
vergence constraint and therefore contributes to the kinetic energy. Furthermore, the
unconditional stability of methods associated with the energy conservation prop-
erty is lost (although a weaker type of stability can still be proven [194]).

To retrieve the original conservation and stability properties we can proceed as
follows. Taking pTkq´1 “ I one can repeatedly solve (7.60)-(7.62) until (7.58) is sat-
isfied - the iterative method is now used to remove both linearization and splitting
errors. From our experience it is most efficient to solve the linear problem (7.60) at
each iteration k and to not introduce a subiteration to solve the nonlinear system
at each k. A slightly better approximation to pTkq´1 is to take pdiagpTkqq´1 [120],
but this only leads to a positive definite matrix MpTkq´1G if the time step is small
enough. In any case, the quadratic or linear convergence of ‘full’ or ‘simplified’
Newton is lost.

A completely different approach is the exact fractional step method developed
in Chang et al. [35] for staggered mesh methods, by applying a discrete rotation
operator to the system of equations. This leads to a system of size approximately
Np ˆ Np (2D) or Nu ˆ Nu (3D). Since there is no splitting error involved, the same
number of iterations as for the original system is required. The matrix to be solved
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has similar properties as matrix Tk, so the same (iterative) technique normally ap-
plied to that matrix can be used. The solution of the saddle-point system is avoided.
For future work on large-scale problems this might be the method of choice.

7.7.3 Linearization

The energy-conservation property (7.12) has been derived for Runge-Kutta methods
assuming the convective terms are given by CpUi, Uiq. However, property (4.77)
shows that pCpci, Uiq, Uiq “ 0 holds independent of the time level of c as long as
Mc “ 0 (see e.g. [168, 203, 195]): the time level of the convecting quantity is not
important for the conservation of the norm of the convected quantity. This means
that instead of taking ci “ Ui one can approximate ci by using previous time levels,
and then only a linear system has to be solved in order to achieve conservation of
energy. For example, for the 1-stage Gauss method, a second order approximation
is c̃1 “ 3

2 cn ´ 1
2 cn´1. The extension to higher order methods is detailed in [151].

If linearization is combined with the splitting of Chang et al. [35] no iteration is
required. Although the total work involved at each time step is obviously higher
than the solution of a simple Poisson equation (as done in fully explicit methods),
the reduction in number of necessary iterations [35] and increase in allowable time
step can make this approach competitive with explicit methods.

7.8 results

A number of test cases are considered to evaluate the practical performance of the
(additive) Runge-Kutta methods presented in this chapter, which were summarized
in section 7.5.6. It is interesting to compare the additive methods with the two
methods by which they are formed (such as Radau IIA and IIB in case of IIA/B).
In the last test we leave out the Lobatto IIIC/E method, because it will turn out not
to be competitive. We consider 1-stage (Gauss 2) and 2-stage methods (all others).
We have also numerically verified the orders of accuracy of the 3-stage variants of
these methods. These will not be presented here, because the 2-stage methods are
a better compromise between order of accuracy and computational cost. Note that
we leave out the DIRK E method, because it is simply the Gauss 2 method but then
applied to a time step twice as large.

7.8.1 Taylor-Green vortex

We repeat the Taylor-Green vortex test from section 6.4.1, now for implicit methods.
The nonlinear system of equations is solved with full Newton, with a trivial initial
guess and δa “ δr “ 10´14. For the largest time step, ∆t “ 1{10, this requires 2

or 3 nonlinear iterations (depending on the method); for the smallest time steps 1

iteration suffices.
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Figure 7.2: Error in velocity as function of time step.
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Figure 7.3: Error in pressure as function of time step.



136 implicit runge-kutta methods

Figures 7.2 and 7.3 show the temporal error in the u-velocity and pressure for all
methods:

eu “ }u ´ u∆tÑ0}8, ep “ }p ´ p∆tÑ0}8. (7.63)

The error in the v-velocity component and the error measured in the L2-norm give
almost identical results and are not shown here. The methods are split over two
figures to keep the presentation as clear as possible. All methods achieve their the-
oretical order of accuracy. The third order methods of the Radau family are almost
indistinguishable, and similarly the second order methods of Lobatto and DIRK
type are close. The results for the pressure error show that only Gauss 4, Radau
IIA and Lobatto IIIA reach second order convergence, as predicted by table 7.8. The
Lobatto IIIA stands out since it is the only method that achieves the same order in
velocity and pressure, and its pressure error is much lower than Gauss 2. Although
this corresponds to the theoretical results, it is still surprising considering that both
methods are so closely related: implicit midpoint (Gauss 2) and trapezoidal rule
(Lobatto IIIA), which are identical for linear equations. We remark that in all cases
a pressure with the same temporal order as the velocity can be obtained at the
expense of solving the additional Poisson equation (6.26).

7.8.2 Inviscid shear layer roll-up

7.8.2.1 Introduction

In order to study the energy conservation and time reversibility properties of the
different Runge-Kutta methods we simulate again the roll-up of a shear layer, as was
introduced in 3.3.2. For this test case (having periodic boundaries) equations (2.22)
and (2.25) should hold in a discrete sense. We first investigate these (in)equalities
when ν approaches zero. Since the diffusive operator is a symmetric positive defin-
ite matrix, an analog of the continuous energy estimate (2.25) can be obtained:

Kptq ď Kpt0qe´2νCht. (7.64)

In the continuous case the Poincaré constant reads C “ pπ{Lq2; in the discrete case
we have Ch “ 8{L2 (for the second order discretization), with L “ 2π the size of the
domain. The continuous energy estimate is slightly stricter than the semi-discrete
estimate.

Figure 7.4 shows the evolution of the normalized kinetic energy Kptq{Kpt “ 0q as
a function of time for different values of ν “ 1{Re and for both spatial discretiz-
ations (second and fourth order), using the Gauss methods. The energy is strictly
decreasing for any value of ν ą 0, and for ν “ 0 energy is exactly conserved (until
machine precision). Equation (7.64) gives an upper bound; in this case the energy
decreases much faster. We have taken a coarse mesh (40 ˆ 40) and a large time step
(∆t “ 1

2 ) to stress that property (2.22) is discretely mimicked for any mesh and any
time step.
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Figure 7.4: Energy as a function of time for different values of ν. ´´: estimate (7.64), ´:
reference solution; ˝: 2nd order space and time; ˝: 4th order space and time.

We continue with the case ν “ 0, i.e., the flow is completely inviscid. Noise
(‘wiggles’) will be present on any mesh (if the simulation is run long enough), due
to dispersive and aliasing errors and the absence of viscosity to damp the smallest
scales. The associated ‘bursts’ in vorticity lead to an increase in the enstrophy. How-
ever, in contrast to what is mentioned in Brown and Minion [21], such oscillations
do not lead to ‘catastrophic blowup’ with the energy-conserving time-integration
methods under investigation (in fact, they cannot blow up due to their unconditional
stability properties). Time-reversibility errors will be investigated by reverting the
simulation at t “ 2 or t “ 8: we change ∆t to ´∆t and march back to t “ 0. Since
we solve the inviscid Navier-Stokes equations, the additive methods reduce to their
energy-conserving part: Radau IIA/B is Radau IIB, Lobatto IIIC/E is IIIE and DIRK
L/E is DIRK E.

We define the following error measures. The error in the energy of the flow at
any time instant t is defined as

ekptq “
Kptq ´ Kpt “ 0q

Kpt “ 0q
, (7.65)

where K is the total discrete energy (equation (4.40)). To express the error in time
reversibility of a method we compare the velocity fields at the start and the end of
the simulation:

et “ }Vptendq ´ Vpt “ 0q}8. (7.66)

Finally, it is common for this test case to study the total enstrophy of the flow,

E “
1
2

ÿ

i,j

Ωω
ij ω2

ij, (7.67)

with Ωω the sizes of the vorticity-centered finite volumes. The enstrophy is a quad-
ratic quantity which is conserved by the continuous inviscid, incompressible, two-
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dimensional Navier-Stokes equations, but not by the spatial discretization. The cor-
responding error,

eεptq “
Eptq ´ Ept “ 0q

Ept “ 0q
, (7.68)

can be used to investigate temporal errors of the methods that have no energy
and time-reversibility errors. It gives an indication of how well the flow field is
resolved. The enstrophy error defined by (7.68) consists of both spatial and temporal
errors. When performing order studies this spatial error is removed by subtracting
a simulation at a very fine time step.

All simulations are performed with full Newton and δa “ 10´14. We do not
perform the additional pressure solve (6.26), but noticed that it helps to obtain
a better initial guess for the next time step. However, extrapolating the velocities
from the previous time step as prescribed in section 7.7 leads to more iterations of
the Newton process if t ą 4, especially for higher order methods (p ą 2). This is
attributed to the under-resolution of the simulation: the flow field becomes noisy
when the shear layer starts to roll up. For well-resolved simulations this issue will
not occur, but in any case it can be solved by using the trivial initial guess. In order
to investigate the sensitivity of energy conservation to the tolerance of the nonlinear
method we performed a simulation with different tolerance levels, δa “ 10´12, 10´8

and 10´4. In figure 7.5 the behavior of the energy error and the number of iterations
are shown for the case of Gauss 2 with t “ 10´1. The fact that the flow field is more
‘difficult’ after t “ 4 manifests itself in the number of iterations (for tol=10´8) or
in an increase in energy error (tol=10´12). After an initial increase the error stays
approximately constant and remains on the order of the specified tolerance. This
is important, since it shows that the energy-conserving methods are robust with
respect to convergence of the nonlinear iteration, and keep their stability properties
for larger tolerances. For smaller time steps or higher order methods the error levels
are lower.
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Figure 7.5: Influence of solver tolerance, Gauss 2, ∆t “ 10´1.
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7.8.2.2 Comparison

To show the beneficial effect of energy conservation we continue with the case ν “ 0
and compare the behavior of ek and eE for the Gauss 4 method (figures 7.6a-7.6b)
and the Radau IIA method (figures 7.7a-7.7b). Time reversal occurs at t “ 8. The
Gauss methods behave as expected: energy is conserved until machine precision
and the simulation is exactly time-reversible. Enstrophy is not conserved by the
spatial discretization, as can be seen in figure 7.6b. The enstrophy error is dominated
by the spatial errors, even for large time steps; at ∆t “ 1 the CFL number is almost
10. Radau IIA has a small energy error (1-2% of the initial energy), but for longer
time periods it will continue to grow in time; eventually smoothing and damping
the entire flow. The sign of the error is negative, so the energy of the flow strictly
decreases, as was expected based on the theoretical analysis from section 7.4.1.
When the time step is reversed to ´∆t, expression (7.10) still predicts a decrease in
the total energy (}un`1}2 ď }un}2), which is in accordance with the results presented
here. In contrast to Gauss 4, the (temporal) enstrophy error of Radau IIA, figure
7.7b, is approximately the same order as the spatial error. A much smaller time step
is necessary to achieve results that are of the same quality as the Gauss methods.
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Figure 7.6: Energy and enstrophy errors for Gauss 4 applied to shear-layer problem.

The errors in energy, enstrophy and time reversibility of all methods have been
collected in figures 7.8a-7.8b (time reversal at t “ 2). Figure 7.8a shows that all
energy-conserving methods (Gauss, Radau IIB, Lobatto IIIE) have an error in en-
ergy which stays at machine precision, as expected. The error in the non-energy-
conserving schemes (Radau IIA, Lobatto IIIC and DIRK) decreases upon time step
refinement according to the order of the method, except for Lobatto IIIC, which
shows third order instead of second order. Similarly, figure 7.8b shows that the
enstrophy error at t “ 2 converges according to the order of the method, except
for Lobatto IIIC, which shows again a higher order convergence rate. Most im-
portantly, the energy-conserving methods have a much lower error constant than
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Figure 7.7: Energy and enstrophy errors for Radau IIA applied to shear-layer problem.

their non-energy-conserving counterparts. The order of accuracy alone is therefore
not decisive. Figure 7.8c shows the time-reversibility error, which decreases with
third order for all time-irreversible methods (Radau IIA, Radau IIB, Lobatto IIIC
and DIRK) - this can probably be explained by fortuitous error cancellations in the
backward simulation of the second order methods. Comparing figures 7.8a to 7.8c
reveals that Radau IIB is energy-conserving but time-irreversible, and Lobatto IIIA
(Crank-Nicolson) is time-reversible, but not energy-conserving. Although Crank-
Nicolson is conceptually close to the implicit midpoint method, we see here that
the energy-conserving properties of the implicit midpoint method make it clearly
superior in predicting the enstrophy of the flow. Furthermore we see that the time-
reversibility property of Lobatto IIIE (which was obtained by sacrificing one order
compared to Radau IIB) is unimportant for accurate enstrophy prediction. There-
fore, we conclude that energy conservation is more important than time-reversibility. We
disagree with the conclusions stated by Duponcheel et al. [45], who mention that a
‘crucial factor for time-reversibility is the accuracy of the time stepping scheme and
its interaction with the space-discretization’. The time-reversibility of a method is
not depending on its accuracy; we clearly see that second-order methods like Crank-
Nicolson or Gauss 2 can be time-reversible, while a third-order method like Radau
IIA is not. For Runge-Kutta methods, time-reversibility is completely determined
by satisfying conditions (7.17)-(7.19). The only relation between time-reversibility
and order is that time-reversible schemes are of even order.

At t “ 8 similar conclusions can be drawn. The absolute error values are much
higher than at t “ 2, which is attributed to the lack of smoothness of the flow field
compared to t “ 2. Furthermore, the enstrophy errors at t “ 8 are more irregular
than at t “ 2, and not all methods are in the range of asymptotic convergence. Still,
the energy-conserving methods show the best performance.

In practice, the choice for a method depends on efficiency: accuracy versus com-
putational costs. Gauss 2 and Lobatto IIIA are the ‘cheapest’ methods, having
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roughly the same cost, DIRK is about twice as expensive, and all other methods
are much more expensive. For this test case the Gauss 2 or DIRK methods are
favorable if second-order accuracy is sufficient. For highly accurate computations
the Gauss 4 method is to be preferred, followed closely by the Radau IIB method.
The Lobatto IIIC/E methods are not competitive for this test case due to their high
computational costs and relatively low accuracy.
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Figure 7.8: Energy, enstrophy and time-reversibility errors at t “ 2.
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7.8.3 Corner flow

In this section we investigate the performance of the different time-integration
schemes for problems with varying stiffness and the role of L-stability for such
problems. We consider a test case from van Kan [194]: unsteady flow through a
corner, featuring unsteady inflow conditions on the top, no-slip conditions on the
left and bottom, and outflow conditions on the right (figure 7.9). Although the flow
in the lower-left corner is similar to the flow in lid-driven cavities, we deliberately
do not compute that test case here, because it features steady boundary conditions
for the continuity equation. Unsteady inflow conditions are a more severe test for
methods to show the correct convergence order in both velocity and pressure (see
the discussion in chapter 6). Boundary layers develop on the solid walls, and the
stiffness of the problem can be controlled by varying the mesh size and Reynolds
number (and as such the thickness of the boundary layers).

case Nx ˆ Ny tend Re domain (Lx ˆ Ly) grid

1 20 ˆ 20 1 10 1 ˆ 1 uniform

2 80 ˆ 80 1 10 1 ˆ 1 uniform

3 80 ˆ 80 1 10 1 ˆ 1 cosine

4 80 ˆ 80 1 1000 1 ˆ 1 cosine

5 200 ˆ 100 40 1000 2 ˆ 1 cosine

Table 7.9: Settings for corner flow.

u “ 0, v “ ´ sin
`

πpx3 ´ 3x2 ` 3xq
˘

e1´1{t

u “ 0

v “ 0

u “ v “ 0

´p ` ν Bu
Bx “ 0

Bv
Bx “ 0

extended domain case 5

Figure 7.9: Corner flow.
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We perform the five different test cases listed in table 7.9. In each case one of the
parameters (Nx/Ny, Re, domain or grid) is varied with respect to the previous case.
The cosine grid is given by transforming a uniform grid ξ according to

x “ Lx

ˆ

1 ´ cos
ˆ

π

2
ξ

Lx

˙˙

, (7.69)

and similarly in y-direction. This transformation results in a fine grid near the solid
walls x “ 0 and y “ 0. For case 5 the transformation in y-direction is changed to

y “ Ly{2
´

1 ´ cos
´

π ξ
Ly

¯¯

in order to have a fine grid at both y “ 0 and y “ 1.
Qualitative pictures of the flow field are shown in figure 7.10a for case 1 (2 and 3

are similar), figure 7.10b for case 4, and figure 7.11 for case 5. In cases 1-3 the flow is
diffusion-dominated and the mesh Péclet condition is satisfied in the entire domain.
In cases 4 and 5 the flow is convection-dominated and the mesh Péclet condition is
satisfied only near the walls, where the largest gradients appear. Inspection of the
flow field did not show any significant wiggles.
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Figure 7.10: Contour lines of velocity magnitude at t “ 1.
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Figures 7.12a-7.12d show the error in velocity for the different time-integration
methods. The error is calculated with respect to a simulation with a very small time
step, and the infinity norm is displayed. The error in pressure is left out, because it
does not provide new insights with respect to the Taylor-Green test case. The Lob-
atto IIIC, C/E and E methods have been left out because their accuracy was again
comparable to Gauss 2 and Lobatto IIIA, but at much higher computational costs.
To interpret the convergence plots we will use the eigenvalues of the linearized op-
erator (Jacobian) ´Cpuq ` νD at t “ 1. Figure 7.13 shows for each case the largest
magnitude eigenvalue in the complex plane (they lie on the real axis) and the amp-
lification factor of each method for ∆t “ 1. These eigenvalues scale as λ „ 1

Re
1
h2 ,

with h the smallest mesh size and Re “ 1{ν the Reynolds number. If h is (locally) of
the order as required by the mesh Péclet condition (h „ 2{Re), the eigenvalues scale
as λ „ Re.

In case 1 the mesh is coarse and the position of the eigenvalues reveals that the
problem is not very stiff. All methods obtain the theoretical rate of convergence, as
was the case for the Taylor-Green vortex. Radau IIA/B is, somewhat surprisingly,
less accurate than Radau IIB. Intuitively one might think that Radau IIA/B should
lie in between Radau IIA and IIB, but this is not necessarily the case. The local
truncation error of Radau IIA/B can be higher due to the presence of error terms
that result from the additional (coupling) order conditions.

Upon refining the mesh, case 2, the problem becomes stiffer and the eigenvalues
shift away from the imaginary axis. Gauss 4 still attains its theoretical convergence
order, but shows a reduced order (namely 2) at large time steps, and is only more
accurate than Radau IIA for sufficiently small time steps. Radau IIA/B is slowly
converging towards its asymptotic rate, but is not more accurate than the second
order methods over the range of time steps considered here.

In case 3, the mesh is refined near the walls and the problem becomes very stiff.
The ratio of the smallest mesh size between the uniform and cosine grid is ap-
proximately 65, and the eigenvalues shift with this factor from case 2 to case 3

as is observed in figure 7.13. All methods now converge according to the orders
for stiff problems mentioned in section 7.3; Gauss 2: Op∆tη`1q “ Op∆t2q, Gauss 4:
Op∆tηq “ Op∆t2q, Radau IIB: Op∆tηq “ Op∆tq, Radau IIA/B: Op∆tη`1q “ Op∆t2q,
DIRK L or L/E: Op∆tη`1q “ Op∆t2q. Radau IIA and Lobatto IIIA are stiffly accurate
and obtain their classical order p. Not surprisingly, Radau IIA is superior to Gauss
4. Radau IIA/B is now more accurate than Radau IIB (which has very poor beha-
vior due to Rp8q “ 1 and η “ 1), but it is not more accurate than Gauss 4 for the
range of time steps considered here. Although Radau IIA/B is L-stable, its lower
stage order compared to Gauss 4 prevents it to be more accurate. The second order
methods all behave very similarly, making Gauss 2 and Lobatto IIIA most attractive
due to the lowest computational cost. We stress once more that the observed order
reduction is not a consequence of the fact that we are dealing with DAEs instead of
ODEs, but a result of ‘ordinary’ stiffness that would also lead to order reduction if
ODEs were considered.
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Figure 7.12: Velocity errors corner flow for cases 1-4.
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A practically more important example of a convection-dominated flow, where
the mesh spacing is close to ‘physical’ requirements, is obtained by increasing the
Reynolds number to 1000, while keeping the grid fixed: case 4. The eigenvalues shift
back towards the imaginary axis by a factor of 100. Lobatto IIIA loses its advantage
over Gauss 2 compared to cases 1-3, where it was more accurate than Gauss 2.
Figure 7.12d indicates that Gauss 4 and Radau IIA/B perform much better than
in case 3. A ‘hump’ in the curves of Radau IIB and Gauss 4 around ∆t “ 10´2

indicates a transition from stage order to classical order (a similar hump appeared
in case 2 at a roughly ten times larger ∆t, corresponding to the ratio of eigenvalues
of case 2 and 4). When increasing the Reynolds number further, with the mesh
locally satisfying the Péclet condition, the eigenvalues will shift again away from
the imaginary axis, increasing the stiffness of the problem. We expect therefore that
for high Reynolds number flow the order reduction as observed in case 3 is likely
to occur again. For practical computations it might be worthwhile to detect stiffness
during running. For example, one can estimate the largest eigenvalue λmax of the
Jacobian by Gershgorin’s theorem and compute the associated value of the stability
function |Rpλmax∆tq|. If this value is larger than some predefined threshold Rmax,
e.g. Rmax “ 0.999, then a code could switch to a stiffly-accurate method such as
Radau IIA.

case 1 case 2 case 3 case 4

Gauss 2, Lob IIIA ´0.98859 ´0.99928 ´1.00000 ´0.99996
Gauss 4, Radau IIB 0.96617 0.99784 1.00000 0.99989
Radau IIA, IIA/B ´5.6 ¨ 10´3 ´3.6 ¨ 10´4 ´1.8 ¨ 10´7 ´1.8 ¨ 10´5

DIRK L, L/E ´1.4 ¨ 10´2 ´9.0 ¨ 10´4 ´4.4 ¨ 10´7 ´4.4 ¨ 10´5

case 1case 2case 3 case 4

´108 ´107 ´106 ´105 ´104 ´103 ´102 Repλq

uuu u

Figure 7.13: Largest magnitude eigenvalues on the real axis and corresponding amplification
factors for cases 1-4.

Finally we consider a similar grid as in case 4, but change the inflow condition to
a periodic one:

vptq “ ´ sin
´

πpx3 ´ 3x2 ` 3xq

¯

e1´1{t4
ˆ

1
2

` sin2ptq
˙

{2e. (7.70)

After an initial transient of approximately 5 time units, the inflow becomes periodic
with period π, average 0.5 and amplitude 0.25. The domain is increased in size (see
figure 7.9) to allow vortices to travel for some distance without being affected by
the outflow boundary conditions. Based on the results of case 4 we select the Gauss
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2, 4, Radau IIA and Radau IIA/B methods. In order to study the performance of
the different methods, we look at the global kinetic energy K and the u-velocity
component in point (0.2,0.2) as function of time. The latter point lies inside an oscil-
lating vortex and its value gives an indication how well the small scales of the flow
are resolved in time. In all cases we use a very large time step, ∆t “ 1, meaning that
there are only 3 time steps to resolve a period of the oscillation. Figures 7.14a-7.14b show
K and up0.2, 0.2q for these methods, together with reference results obtained at very
small ∆t. Surprisingly, even at this large time step, all methods agree reasonably
well with the reference solution. When zooming in on the results of figure 7.14a,
one finds that Gauss 4 is following the exact solution perfectly, followed closely by
Radau IIA/B and Radau IIA. The good behavior of Gauss 4 can be explained by the
fact that the problem is smooth in time, so that higher-order methods are effective.
Gauss 2 is the least accurate, but this is not surprising since it is only second or-
der in time. These conclusions become more pronounced when studying the small
scale oscillations, figure 7.14b, where Gauss 2 starts to deviate strongly from the
reference solution, while Gauss 4 and Radau IIA/B still perform very well. To ob-
tain qualitatively similar results with Gauss 2 as with Gauss 4 the time step had to
be reduced to approximately ∆t “ 1{4, increasing the number of time steps with
a factor 4. Since the size of the matrix of the non-linear problem to be solved for
Gauss 4 is p2pNu ` Npqq2 instead of pNu ` Npq2, a factor of 4 is generally not enough
to offset the increase in computational costs, because the solution of the system is
more expensive than OpNu ` Npq. Gauss 2 is then to be preferred. However, for a
higher accuracy and smaller time steps this factor will rapidly increase and make
Gauss 4 competitive.
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Figure 7.14: Periodic inflow, case 5.
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7.9 conclusions

In this chapter we have investigated energy-conserving Runge-Kutta methods for
the incompressible Navier-Stokes equations. Energy-conserving schemes are devoid
of numerical viscosity, which is a favorable property for DNS and LES computa-
tions, where the Reynolds numbers are typically high and any viscosity should
be as physical as possible. LES sub-grid models can then be tested without the
interference of any artificial viscosity. Furthermore, the non-linear stability proper-
ties associated with energy conservation make these methods very appropriate for
integrating over long periods of time, possibly with large time steps. The Gauss
methods stand out since they are energy-conserving, time reversible and have the
highest possible order given the number of stages. Methods based on Radau and
Lobatto quadrature can also be transformed into energy-conserving methods (such
as Radau IIB and Lobatto IIIE), but are of lower order.

The beneficial effect of energy conservation was shown by simulating the roll-up
of an inviscid shear layer. The energy-conserving methods gave an accurate pre-
diction of the enstrophy of the flow; in particular the two-stage Gauss and Radau
IIB methods gave excellent results at very large time steps. Apparently, these meth-
ods have small error constants, which is at least as important as the order of ac-
curacy of the method. Classical methods, such as explicit Runge-Kutta or multi-
step methods, cannot combine high order with unconditional stability and inev-
itably add some artificial viscosity to the flow. The time-reversibility property of
the time integration method was found to be unimportant by comparing Gauss 2

(time-reversible and energy-conserving) with Crank-Nicolson (time-reversible but
not energy-conserving) and Radau IIB (energy-conserving but not time-reversible).

A disadvantage of all energy-conserving methods is that they lack L-stability,
which makes them unsuitable if stiff components (such as boundary layers) are
present in the semi-discrete equations. This leads to order reduction for energy-
conserving methods of order higher than 2. We have therefore proposed a new
class of high-order Runge-Kutta methods, that combine energy-conservation in the
inviscid limit with L-stability in the stiff limit. We construct such methods by start-
ing from a stiffly accurate (L-stable) Runge-Kutta method, transforming it with the
method of Sun [188], and using these together to form a fully implicit additive
Runge-Kutta (ARK) method. Although these new ARK methods lack the algebraic
stability properties of their two constituents, they possess A-stability, which was
sufficient for the test cases considered here. The highest possible order (p “ 2s ´ 1)
ARK method with these properties is the Radau IIA/B method. Other additive
methods derived in this chapter, being diagonally implicit or based on Lobatto
quadrature, were not found to be competitive in terms of accuracy versus compu-
tational cost. The Radau IIA/B method gave excellent results for long time integ-
ration of a convection-dominated problem with considerable stiffness, employing
large time steps. However, order reduction still appears for very stiff problems -
not due to a lack of L-stability, but due to a lower stage order - and the asymptotic
convergence rate is only reached for sufficiently small time steps. As a consequence,
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the Radau IIA/B method does not outperform the Gauss method in the test cases
considered here. For very stiff problems the issue of order reduction persists, and
only stiffly-accurate methods perform well on such problems. The construction of an
‘all-round’ high-order (additive) Runge-Kutta method, which is both energy-conserving and
not suffering from order reduction for stiff problems, remains an open question.

In the end, the choice for a method depends on the problem at hand and on the
desired accuracy. We believe the Gauss 4 method is very suitable for sensitive flow
phenomena that require high accuracy, such as DNS studies of the transition from
laminar to turbulent flow, especially when long time intervals are considered. For
many engineering problems, including wind-turbine wake studies, second order is
probably sufficient and then the Gauss 2 method is the best candidate for turbulent
flow simulations in which artificial viscosity should be avoided. This method has
the additional advantage that it does not suffer from order reduction when applied
to stiff problems.

For future work on large turbulent flow computations it is important to solve
the non-linear saddle-point problem efficiently, which can be achieved by applying
proper splitting and linearization techniques. Furthermore, it is crucial to perform
adaptive time stepping in order to obtain efficient methods which adjust to the
dynamics of the flow. This is not trivial, since variable step sizes can considerably
deteriorate the good properties of symplectic methods (see e.g. [62] for an example,
and [61] for remedies). We expect that the combined (space and time) fourth-order
energy-conserving method leads to accurate simulation of turbulence, even with
large time steps and coarse grids. In future work we will address such turbulent
flows and compare the efficiency of the methods analyzed in this chapter with the
current state-of-the-art methods, such as the IMEX Runge-Kutta method from [181].





Part III

ACTUATOR METHODS

This part describes actuator methods used to represent the action of
bodies on the flow. A finite volume discretization of the immersed in-
terface method is proposed as basis for these new actuator methods.
The resulting actuator-disk, -line and -surface methods are applied to
wind-turbine wake simulations.





8IMMERSED INTERFACE METHODS

adapted
from [147]..the actuator disk, which we define as an artificial device producing sudden

discontinuities in flow properties.. [71]

8.1 introduction

8.1.1 Background

In section 1.4.1 we described the generalized actuator disk approach as a method
to model the effect of a wind turbine on the incoming flow. A forcing term repres-
ents the action of the body of the flow. As became clear from this section, in the
wind energy community different researchers have found that upon introducing
such a forcing term in a discrete setting care has to be taken to prevent unphysical
instabilities and oscillations, see e.g. [175, 174]. Currently, the most common ap-
proach is based on the work of Sørensen et al. [177], who distribute the force on the
actuator to the surrounding grid points by convolution with a regularization kernel
(equation (1.14)). This technique is extended to an unsteady formulation employing
actuator lines to represent rotating turbine blades [176]. Inherent to this approach
is the choice of a parameter that controls the volume over which the forces are dis-
tributed. Computations with the actuator line method in [111] show that results
can be sensitive to the value of this regularization parameter, especially near blade
tips. Réthoré [140] shows that in a collocated variable arrangement a correction to
the Rhie-Chow algorithm is necessary to avoid oscillations in pressure and velocity.
The actuator surface approach of Sibuet-Watters et al. [167] uses surface forces in-
stead of volume forces and does not require a regularization parameter. However,
their approach is strongly rooted in inviscid, incompressible aerodynamic theory,
having the downside that viscous effects are difficult, if not impossible, to take into
account. Another issue is that the simple case of an actuator disk has to be modeled
by prescribing the vorticity distribution of the slipstream surface (which in the in-
viscid case extends infinitely far downstream). Furthermore, the method requires
the unknowns to be placed on the actuator surface, necessitating a ‘body-fitted’
mesh for the actuator surface. Rotating actuator surfaces are modeled by working
in a rotating reference frame and introducing Coriolis forces in the equations.

To summarize, different types of forces (surface/volume forces) have been pro-
posed with different discretization methods (finite difference/volume/element),
different variables (velocity-pressure/velocity-vorticity etc.) and different variable
layouts (collocated/staggered). Staggered grids and surface forces seem to be less
susceptible to oscillations than other approaches.

153



154 immersed interface methods

8.1.2 Approach

We propose a discretization method that circumvents the issues mentioned above.
The first important step is to realize that, from a physical point of view, actuator
forces are surface forces. The second step is to realize that these surface forces can in-
troduce discontinuities in flow variables and/or their derivatives. A finite volume
discretization with a staggered grid layout, as described in chapter 3, is therefore
well-suited to handle this problem: a finite volume approach is able to handle dis-
continuities, and the staggered grid has the advantage of strong pressure-velocity
coupling.

The starting point for our discretization is the immersed interface method (IIM),
first proposed by LeVeque and Li [96] for elliptic problems. Interfaces occur in dif-
ferent physical situations, such as problems involving membranes and materials
with discontinuous properties. In our case the interface represents an actuator sur-
face on which prescribed surface forces act. The IIM is a finite difference method
that handles discontinuities arising from surface forces by taking jump conditions
into the differencing stencil. The method has been extended to the incompressible
Navier-Stokes equations and has been applied to a variety of problems, see e.g. [98].
The method is second-order accurate in the maximum norm and results in a sharp
representation of an interface. In this chapter we propose a finite volume approach
to the immersed interface method, instead of the commonly used finite difference
approach. This is natural, since flows involving jumps should be tackled by us-
ing the weak (integral) formulation. We integrate the governing equations in space
and time and show that this has a number of advantages over the finite difference
approach.

Since in wind-turbine applications actuators generally have a prescribed motion
and prescribed forcing, this work will focus on these situations. We are paying spe-
cial attention to what happens at large time steps, since this is of practical interest
when simulating rotating actuator lines. In those simulations the time step can be
severely restricted by the fact that the tip of a blade should not cross more than a
grid cell per time step. However, we stress that the methods described in this paper
are also applicable to general situations in which the force on or the motion of an
interface follows from the flow field.

The papers of Beyer and LeVeque [17] and LeVeque and Li [96] form the starting
point for our work, providing a sound theoretical background and a number of
one-dimensional test cases that we will repeat in this paper with our finite volume
approach. The one-dimensional case, discussed in section 8.2, contains many in-
gredients that will be used for treating the two-dimensional incompressible Navier-
Stokes equations, discussed in sections 8.3 and 8.4.
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8.2 one-dimensional preliminaries

8.2.1 Steady

As an introduction we consider, similar to LeVeque and Li [96], a one-dimensional
elliptic equation with a singular source term:

uxx “ Cδpx ´ αq. (8.1)

The reason to study this equation as a model for the incompressible Navier-Stokes
equations is explained in [96]. By integrating equation (8.1) from x “ α´ to x “ α`

we obtain the jump relation
ruxs “ C. (8.2)

The solution is also allowed to jump, i.e.

rus “ Ĉ. (8.3)

This can be taken into (8.1) as the derivative of a Dirac function, but here it is taken
as an external constraint (like in [96]). The jumps C and Ĉ are assumed to be known.

Consider finite volumes Ωi, Ωi`1, with centers xi, xi`1, etc. The discontinuity at
x “ α lies inside finite volume Ωj`1, as depicted in 8.1. The discretization for a
general (interior) volume reads

puxqi`1{2 ´ puxqi´1{2 “ 0, i ‰ j ` 1. (8.4)

For the finite volume containing the discontinuity we have

puxqi`1{2 ´ puxqi´1{2 “ C, i “ j ` 1. (8.5)

The finite volume formulation has the advantage that the singular Dirac function is
not present. Note that there is no approximation in these equations yet. Errors are
introduced when approximating ux at the faces in terms of ui, the point values in
the centers of the finite volumes (not volume average values). At an interior face we
use the central approximation

puxqi`1{2 “
ui`1 ´ ui

∆x
, i ‰ j, i ‰ j ` 1. (8.6)

This approximation is second order accurate provided the underlying function upxq

is ‘smooth’ enough. If jumps are present in the solution or its derivative(s), addi-
tional terms are required to guarantee second order accuracy. These extra terms are
found by considering generalized Taylor expansions. In appendix A.3 we detail the
derivation for puxqj`1{2, resulting in:

puxqj`1{2 “
uj`1 ´ Ĉ ´ Cpxj`1 ´ αq ´ uj

∆x
. (8.7)
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The local truncation error of this approximation is Op∆xq. This is sufficient to en-
sure that the global error is Op∆x2q in the maximum norm (see e.g. [96]). This can
be derived in a similar way as the local-global error analysis from chapter 4. For
completeness, an approximation with a local truncation error of Op∆x2q is shown
in appendix A.3. Note that so far we assumed that α is to the right of xj`1{2. If it is
to the left, then xj`1 should be changed to xj (i.e., the finite volume center closest
to α).

Upon inserting the expressions for ux into (8.4)-(8.5) we obtain

uj`2 ´ uj`1

∆x
´

uj`1 ´ uj

∆x
`

Ĉ ` Cpxj`1 ´ αq

∆x
“ C, (8.8)

uj`1 ´ uj

∆x
´

Ĉ ` Cpxj`1 ´ αq

∆x
´

uj ´ uj´1

∆x
“ 0, (8.9)

which can be rewritten as

∆2uj`1 “ C ´
Ĉ

∆x
´

Cpxj`1 ´ αq

∆x
looooooomooooooon

correction

, (8.10)

∆2uj “
Ĉ

∆x
`

Cpxj`1 ´ αq

∆x
looooooomooooooon

correction

, (8.11)

where ∆2uj “
uj`1´2uj`uj´1

∆x . This discretization is the same as the finite difference
discretization derived by LeVeque and Li [96]. We do not group the terms on the
right-hand side in terms of C in order to stress the difference between the terms:
C in equation (8.10) is the source term arising from the right-hand side of the dif-

ferential equation;
Cpxj`1´αq

∆x is a correction term to make the evaluation of ux more
accurate. This distinction is less clear in the finite difference approach, where the en-
tire right-hand side terms result from local truncation error considerations. Without
the correction terms local truncation errors of Op1q are introduced, reducing the
global error to Op∆xq. Note that the terms involving Ĉ should not be regarded as
corrections; they can be seen as discretization of the derivative of a Dirac function,
and are the way in which the discrete system notices the jump in u. Without these
terms the discrete solution will not converge to the correct solution. Upon summing
the right-hand side of the discrete equations over the entire domain all correction
terms cancel and we get C, like in the continuous case:

continuous:
ż

uxx dx “ C, discrete:
ÿ

j

∆2uj “ C. (8.12)
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xj´1{2 xj`1{2 xj`3{2xj xj`1

uj

uj`1

ux

α

Figure 8.1: Function upxq with discontinuity at x “ α.

As a test case, we take a domain r0, 1s with homogeneous Dirichlet boundary
conditions, with the exact solution:

upxq “

$

&

%

ppα ´ 1qC ´ Ĉqx, 0 ă x ă α,

pĈ ´ αCqp1 ´ xq, α ă x ă 1.
(8.13)

We take α “ 0.7, Ĉ “ ´1, C “ ´4, and show the results in figure 8.2. The numerical
solution and exact solution are equivalent; the error in the maximum norm is at
machine precision. Without the correction terms in (8.10)-(8.11) the solution will be
first-order accurate (in the maximum norm).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x

u

 

 
u
u ex

Figure 8.2: Exact and numerical solution to equation (8.1) with jumps in u and in ux.

We note that the more general 1D problem discussed in [96]

pβuxqx ` κu “ f ` Cδpx ´ αq, (8.14)



158 immersed interface methods

can be handled similarly. Upon integration over a finite volume we need an expres-
sion for

ş

κu dx in terms of the point values ui and jumps C and Ĉ. This is detailed
in appendix A.3.

8.2.2 Unsteady, fixed source

We proceed with the unsteady case

ut “ uxx ` Cptqδpx ´ αq. (8.15)

The strength of the singular source Cptq depends on time, but its position α is still
fixed. The jump in the derivative is given by ruxptqs “ ´Cptq, and the jump in the
solution by ruptqs “ Ĉptq. Instead of first integrating in space and subsequently
discretizing the resulting equation in time (method of lines), (8.15) is integrated
in space and time and then discretized. For finite volume Ωj`1, which contains the
discontinuity, we get

ż tn`1

tn

ż

Ωj`1

ut dΩ dt “

ż tn`1

tn

´

puxqj`3{2 ´ puxqj`1{2

¯

dt `

ż tn`1

tn
Cptq dt. (8.16)

For all other finite volumes (i ‰ j ` 1) the integral involving Cptq does not contrib-
ute. Equation (8.16) is still exact. We will discuss how to approximate each term
individually.

The first integral can be written as

ż tn`1

tn

ż

Ωj`1

ut dΩ dt “

ż tn`1

tn

d
dt

ż

Ωj`1

u dΩ dt “

«

ż

Ωj`1

u dΩ

fftn`1

tn

. (8.17)

Exchanging differentiation and integration is valid as long as the finite volume and
any discontinuities inside the finite volume are not moving in time. The approximation
of the spatial integral in the last term is detailed in appendix A.3, equation (A.44):

ż

Ωj`1

u dΩ “ ∆xuj`1 ` Ĉptq∆α, (8.18)

which constitutes an Ophq approximation. The complete term becomes

«

ż

Ωj`1

u dΩ

fftn`1

tn

“

´

∆xun`1
j`1 ` Ĉptn`1q∆α

¯

´

´

∆xun
j`1 ` Ĉptnq∆α

¯

(8.19)

“ ∆xpun`1
j`1 ´ un

j`1q ` pĈptn`1q ´ Ĉptnqq∆α. (8.20)
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The approximation of the second term is straightforward (but will become more
complicated when the discontinuity is moving):

ż tn`1

tn

´

puxqj`3{2 ´ puxqj`1{2

¯

dt “

ż tn`1

tn

˜

∆2uj`1 `
Ĉptq ´ Cptqpxj`1 ´ αq

∆x

¸

dt.

(8.21)
The first term in this expression can be evaluated with any standard time-integration
method; we use Crank-Nicolson:

ż tn`1

tn
∆2uj`1dt “

1
2

∆tp∆2un
j`1 ` ∆2un`1

j`1 q. (8.22)

The second term can also be treated this way:

1
h

ż tn`1

tn
Ĉptq ´ Cptqpxj`1 ´ αq dt “

1
2

∆t
∆x

´

Ĉptnq ` Ĉptn`1q´

pCptnq ` Cptn`1qqpxj`1 ´ αq

¯

. (8.23)

The third term in (8.16) should be similarly approximated with a suitable numer-
ical quadrature method; we use the trapezoidal rule:

ż tn`1

tn
Cptq dt “

1
2

∆tpCptnq ` Cptn`1qq. (8.24)

The fully discrete system can thus be written as

∆xpun`1
j`1 ´ un

j`1q ` pĈptn`1q ´ Ĉptnqq∆α
loooooooooooomoooooooooooon

corrections

“

1
2

∆tp∆2un
j`1 ` ∆2un`1

j`1 q `
1
2

∆t
∆x

´

Ĉptnq ` Ĉptn`1q

¯

`
1
2

∆tpCptnq ` Cptn`1qq

´
1
2

∆t
∆x

´

Cptnq ` Cptn`1qqpxj`1 ´ αq

¯

loooooooooooooooooooooomoooooooooooooooooooooon

corrections

. (8.25)

For the case Ĉ “ 0, our method is equivalent to the discrete Dirac approach from
Beyer and LeVeque [17] (with a hat function as discrete Dirac function) and the finite
difference IIM in Li and Ito [97]. For Ĉ ‰ 0, our approach differs from the approach
of Li and Ito [97] (this case is not discussed in [17]). Their approach requires dĈ

dt ([97],
p. 190), which is not needed in the current finite volume formulation. Our proposed
method has therefore the advantage that less differentiability of the source terms is
required.
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We use a test case from Beyer and LeVeque to test our discretization (see [17],
section 5.2). The exact solution is

upx, tq “

$

&

%

sinp3πxqe´9π2t, 0 ď x ď α,

sinp 3
2 πp1 ´ xqqe´ 9

4 π2t, α ď x ď 1.
(8.26)

Beyer and LeVeque take α “ 1
3 . There is no jump in u (Ĉ “ 0), but there is a jump in

ux:

Cptq “ ´ruxs “ ´
3
2

πe´ 9
4 π2t ´ 3πe´9π2t. (8.27)

We integrate from t “ 0 to t “ 0.1 with ∆t “ ∆x{10, so that we evaluate both the
temporal and spatial order of accuracy at the same time. An example solution is
shown in figure 8.3a. Figure 8.3b displays the error in the maximum norm, clearly
indicating second order convergence. We also show what happens if we do not
include correction terms: the accuracy drops to first order.

This test case is, however, not very stringent in the sense that both rus “ 0 and
ruxxs “ 0. We repeat the test with α “ 1

6 . Solution and error behavior, shown in
figures 8.4a-8.4b, indicate again second order convergence. This confirms that the
use of dĈ

dt terms is not necessary.
As a prelude to the next section, which discusses moving sources, we investigate

what happens when larger time steps are taken. Figure 8.5 shows for both α “ 1
3

and α “ 1
6 the solution behavior when ∆t is increased to ∆t “ ∆x and ∆t “ 2∆x.

Apart from the (expected) fact that the numerical solution becomes less accurate, it
also becomes oscillatory. This is especially evident in figure 8.5b.
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Figure 8.3: Results for problem 5.2 in Beyer and LeVeque, α “ 1
3 , [17].
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(a) Example solution, ∆x “ 1{10, t “ 0.1
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Figure 8.4: Results for problem 5.2 in Beyer and LeVeque, α “ 1
6 , [17].
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Figure 8.5: Qualitative behavior at large time steps, ∆x “ 1{100.
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8.2.3 Unsteady, moving source

Finally, we conclude this one-dimensional analysis by considering a moving source:

ut “ uxx ` Cptqδpx ´ αptqq. (8.28)

An example of the movement of the source during one time step is shown in figure
8.6. As will become clear, the moving source problem is significantly more diffi-
cult than the stationary problem discussed in section 8.2.2. We consider again a
stationary finite volume, and integrate (8.25) in space and time:

ż tn`1

tn

ż

Ωj`1

ut dΩ dt “

ż tn`1

tn

´

puxqj`3{2 ´ puxqj`1{2

¯

dt`

ż tn`1

tn

ż

Ωj`1

Cptqδpx ´ αptqq dΩ dt. (8.29)

The discretization of each term will be discussed again separately.

8.2.3.1 Unsteady term

We start with the first term in equation (8.29). It is tempting to follow equation
(8.17). Care must be taken, however, when a moving discontinuity is present. Sup-
pose the discontinuity at αptq splits the solution in two parts, u1px, tq (xj`1{2 ď x ď

αptq) and u2px, tq (αptq ď x ď xj`3{2), and ruptqs “ u2pαptq, tq ´ u1pαptq, tq. Then we
define the volume integral

Vpαptq, tq “

ż xj`3{2

xj`1{2

u dΩ “

ż αptq

xj`1{2

u1 dΩ `

ż xj`3{2

αptq
u2 dΩ. (8.30)

xj`1{2xj`1{2 xj`3{2xj`3{2 xjxj xj`1xj`1

ujuj
uj`1

uj`1

αptnq αptn`1q

tn t1 t2 tn`1

Figure 8.6: Moving discontinuity crossing a finite volume center (at t “ t1) and a finite
volume face (at t “ t2). Left: solution at tn, right: solution at tn`1.
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We are interested in the time derivative of this volume integral, which should be
written as partial derivative, since the volume integral depends both on t and αptq.
The partial derivative is related to the total derivative as follows. Let U1px, tq be the
primitive of u1px, tq, and U2px, tq be the primitive of u2px, tq. Then

d
dt

ż xj`3{2

xj`1{2

u dΩ “
d
dt

pU1pαptq, tq ´ U1pxj`1{2, tqq `
d
dt

pU2pxj`3{2, tq ´ U2pαptq, tqq

“ 9U1pαptq, tq ` 9αptqu1pαptq, tq ´ 9U1pxj`1{2, tq`

9U2pxj`3{2, tq ´ 9U2pαptq, tq ´ 9αptqu2pαptq, tq

“
B

Bt

ż αptq

xj`1{2

u1 dΩ `
B

Bt

ż xj`3{2

αptq
u2 dΩ ´ 9αptqruptqs.

(8.31)

Upon time integration one obtains

ż tn`1

tn

B

Bt

ż

Ωj`1

u dΩ dt “

«

ż

Ωj`1

u dΩ

fftn`1

tn

`

ż tn`1

tn
9αptqĈptq dt, (8.32)

revealing the presence of an additional term (compared to the case of a stationary
discontinuity), involving the velocity of the discontinuity.

For the first integral on the right-hand side, equation (8.18) remains valid, so the
approximation reads

«

ż

Ωj`1

u dΩ

fftn`1

tn

“ ∆xpun`1
j`1 ´ un

j`1q ` Ĉptn`1q∆αn`1 ´ Ĉptnq∆αn. (8.33)

This assumes that αptn`1q and αptnq are contained in Ωj`1. If α has moved into a
neighboring volume (like in figure 8.6) the corresponding correction term involving
Ĉ belongs to that volume. Equation (8.33) does essentially not contain a temporal
discretization error; it contains a spatial discretization error, which is Op∆xq as
discussed in equation (A.43). The second integral on the right-hand side of equation
(8.32) is discretized as

ż t2

tn
9αptqĈptq dt “

1
2

pt2 ´ tnq

´

9αpt2qĈpt2q ` 9αptnqĈptnq

¯

, (8.34)

which is an Op∆t2q approximation.
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8.2.3.2 Fluxes

For the second term in equation (8.29) we focus on puxqj`3{2. This term requires
corrections when αptq P rxj`1, xj`2s, so for t P rt1, tn`1s:

ż tn`1

tn
puxqj`3{2 dt “

ż tn`1

tn

uj`2 ´ uj`1

∆x
dt ´

ż t2

t1

Ĉptq ´ Cptqpxj`1 ´ αptqq

∆x
dt

´

ż tn`1

t2

Ĉptq ´ Cptqpxj`2 ´ αptqq

∆x
dt. (8.35)

The first integral on the right-hand side should be treated carefully. When the dis-
continuity passes through point xj`1 the solution uj`1 jumps in time, and this has
to be taken into account when approximating the integral. Following appendix A.3,
equation (A.47):

ż tn`1

tn
uj`1 dt “

1
2

∆tpun
j`1 ` un`1

j`1 q `
1
2

vupt1qwpptn`1 ´ t1q ´ pt1 ´ tnqq

´
1
2

vutpt1qwptn`1 ´ t1qpt1 ´ tnq. (8.36)

The temporal jumps vuw and vutw are given by (see e.g. [17])

vuw “ ´ sgnp 9αptqqrus, (8.37)

and
vutw “ ´ sgnp 9αptqqruts “ ´ sgnp 9αptqqruxxs. (8.38)

The second integral on the right-hand side of equation (8.35) can be approximated
with the trapezoidal rule:

ż t2

t1

Ĉptq ´ Cptqpxj`1 ´ αptqq

∆x
dt “

1
2

t2 ´ t1

∆x

´

Ĉpt1q ` Ĉpt2q ´ Cpt1qpxj`1 ´ αpt1qq ´ Cpt2qpxj`1 ´ αpt2qq

¯

, (8.39)

and the third integral follows in a similar fashion.

8.2.3.3 Source term

Finally we discuss the third term in (8.29). If αptq is contained in Ωj`1 in interval
rtn, tn`1s, then the double integral simplifies to

ż tn`1

tn
Cptq dt. (8.40)
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If αptq crosses a face of Ωj`1, as in figure 8.6, we proceed as follows:

ż tn`1

tn

ż

Ωj`1

Cptqδpx ´ αptqq dΩ dt “

ż t1

tn

ż

Ωj`1

Cptqδpx ´ αptqq dΩ dt`

ż tn`1

t1

ż

Ωj`1

Cptqδpx ´ αptqq dΩ dt. (8.41)

At t2 αptq crosses the right face of Ωj`1 (αpt2q “ xj`3{2). The second integral vanishes
because αptq is not contained in Ωj`1 - it will have a contribution to Ωj`2. The first
integral simplifies to

ż tn`1

tn

ż

Ωj`1

Cptqδpx ´ αptqq dΩ dt “

ż t2

tn
Cptq dt. (8.42)

This can be discretized as

ż t2

tn
Cptq dt «

1
2

pt2 ´ tnq

´

Cptnq ` Cpt2q

¯

. (8.43)

In our method each finite volume that is traced out during the movement of the
source gets a contribution from the source. This idea will be extended to two di-
mensions in section 8.4, to develop a new discretization for moving interfaces in
fluids.

8.2.3.4 Space-time discretization and the method of lines

By discretizing the (in space and time) integrated form of the equations, we can
handle the contribution of the moving source term in the equations accurately (even
exactly for simple source functions). A consequence is, however, that the spatial and
temporal discretization cannot be clearly separated: there is no semi-discrete sys-
tem resulting from spatial discretization that can subsequently be integrated in time
(i.e. the method of lines). Strictly speaking, the time discretization that we employ
(trapezoidal rule / Crank-Nicolson) is therefore not a Runge-Kutta method. One
might wonder if other Runge-Kutta methods (for example with better stability prop-
erties or higher order accuracy) can still be used in conjunction with our method,
if there is no semi-discrete system to integrate. Fortunately, classic Runge-Kutta
methods can still be applied in our situation. When using Runge-Kutta methods to
integrate only part of the right-hand side of the equation (namely the flux term), we
obtain a ‘partial’ Runge-Kutta method. Appendix B.4 shows that the order of accur-
acy of the partial Runge-Kutta method is the same as of the original Runge-Kutta
method. This means that we can use, besides the Crank-Nicolson method used in
the previous sections, any other Runge-Kutta method to discretize the equations in
time.
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8.2.3.5 Numerical experiments

We repeat example 5.4 from Beyer and LeVeque [17]. The exact solution is given by

upx, tq “

$

&

%

sinpω1xqe´ω2
1 t, x ď αptq,

sinpω2p1 ´ xqqe´ω2
2 t, x ě αptq.

(8.44)

We take ω1 “ 5π{4 and ω2 “ 7π{4, and integrate from t “ 0 to t “ 0.1. We take a
relatively coarse time step ∆t “ ∆x{2, which is quite severe in the sense that during
each time step finite volume faces or finite volume midpoints are traced out.

In a first test, case 1, we take αptq such that Cptq “ ´ruxptqs “ 0 (using a nu-
merical root-finding algorithm). The jump in the solution can then be prescribed.
The velocity of the interface at t “ 0 is 9αp0q « 0.93 and decreases in time. An ex-
ample solution for ∆x “ 1{25 is shown in figure 8.7a. Figure 8.8 shows the error as
a function of the time step, which clearly converges with second order upon mesh
refinement.

In a second test, case 2, we take αptq such that Ĉptq “ ruptqs “ 0, and Cptq “

´ruxptqs follows from the exact solution. The velocity of the interface at t “ 0 is
9αp0q « 1.8 and decreases in time. An example solution and the error behavior are
shown in figures 8.7b and 8.8.

In a third test, we investigate the effect of ‘sweeping’ out multiple volumes per
time step by taking even larger time steps, ∆t “ ∆x and ∆t “ 2∆x. With the latter
time step as much as 4 finite volumes are traced out during a single time step. We
take 100 finite volumes so the error is dominated by its temporal part. Like in section
8.2.2, the results in figure 8.9 show that our proposed method (with Crank-Nicolson
as basic time integration scheme) leads to oscillatory results. Oscillations appear at
the left side of the discontinuity; this is the region where the interface has passed
and correction terms have acted. Three concepts are important in understanding
these oscillations and reducing them: monotonicity, accuracy and stability.

Regarding monotonicity, oscillations can be avoided by taking ∆t ď ∆x2; this
is a sufficient condition for Crank-Nicolson to be monotone for the heat equation
(see e.g. [74]). Basically, any implicit time integration method suffers from such a
(stringent) condition on the time step (an exception is Backward Euler, which is
monotone for any time step). However, this condition is often too strict in the sense
that it is not always necessary. It depends on the smoothness of the problem. In this
test case we experimentally observed that as long as ∆t ă ∆x{ 9α the solution remains
essentially free of oscillations.

Regarding accuracy, a condition ∆t “ Op∆xq is natural if the spatial and temporal
discretizations are Op∆x2q and Op∆t2q, respectively. If the temporal accuracy is only
Op∆tq, as is the case with Backward Euler, one would require ∆t “ Op∆x2q to have
spatial and temporal errors of similar magnitude.

Regarding (linear) stability, Crank-Nicolson does not have a time step restriction.
This means that, even though oscillations can appear, they do not blow up in time.
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Note that explicit methods would have a stability time step restriction of ∆t “

Op∆x2q.

8.2.4 Summary

In this section we have developed a finite volume discretization in space and time
for treating moving discontinuities in the context of the heat equation. By properly
deriving spatial and temporal correction terms for each term second order accuracy
in the maximum norm is obtained. It is sufficient that these correction terms have
a local truncation error of Op∆xq near the interface. The advantage of our finite
volume formulation is that less differentiability of the problem is required than in
a finite difference formulation (see [17, 97]). Furthermore, the method is intuitive
since it tracks the finite volumes that are intersected by the moving interface. Lastly,
the method is somewhat more straightforward than that presented in [17, 97], since
we derive Op∆xq approximations for each term in the differential equation near the
interface, instead of deriving correction terms such that the total local truncation is
first order accurate (as in [17]).
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Figure 8.7: Example solutions, ∆x “ 1{25, t “ 0.1.
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8.3 incompressible navier-stokes, stationary forcing terms

In this section we extend the methodology presented for the one-dimensional un-
steady heat equation in section 8.2 to the two-dimensional incompressible Navier-
Stokes equations.

8.3.1 Continuous

We consider the incompressible Navier-Stokes equations with a source term (a body
force F) in integral form,

ż

Γ
u ¨ n dΓ “ 0, (8.45)

ż

Ω
ρ

Bu
Bt

dΩ `

ż

Γ
ρu u ¨ n dΓ “

ż

Γ
´p n dΓ `

ż

Γ
µp∇u ` p∇uqTq ¨ n dΓ ` F, (8.46)

where Ω is a control volume with boundary Γ, see figure 8.10a. As before, we use
the integral form as starting point since we will be dealing with discontinuities. We
consider F to be a surface force that acts on an immersed interface S. It can be written
as a surface integral of stresses (e.g. pressure or shear stresses):

F “

ż

SXΩ
f bpξpsqq dA

ˆ

“

ż

SXΩ
f bpξpsqq

ˇ

ˇ

ˇ

ˇ

dξ

ds

ˇ

ˇ

ˇ

ˇ

ds
˙

, (8.47)

where f b is a surface stress (force per unit area) which depends on the position on
the surface ξ parameterized by s; see figure 8.10a.

Discontinuities arise due to the presence of surface forces. Decomposing f b “

p f b ¨ nqn ` p f b ¨ τqτ “ f b
n n ` f b

τ τ, the resulting jump conditions read [98]:

rus “ 0, (8.48)

rps “ f b
n , (8.49)

„

µ
Bu
Bn

ȷ

“ ´ f b
τ τ. (8.50)

The velocity field through the interface is continuous; the pressure jumps due to
normal forces on the interface, and the normal derivative of the tangential com-
ponent of the velocity jumps due to tangential (shear) forces. Higher-order jump
conditions can also be derived, see for example [213]. We will limit ourselves here
to (prescribed) normal forces, so that only the pressure jumps. When drawing an
analogy with the one-dimensional situation, the pressure compares to ux, and f b

compares to C.
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In most existing work on immersed interface methods (and immersed boundary
methods) the differential form of the incompressible Navier-Stokes equations is used:

ρ

ˆ

Bu
Bt

` ∇ ¨ puuq

˙

“ ´∇p ` µ∇2u ` f f l . (8.51)

The (singular) force term f f l is related to f b via

f f lpxq “

ż

S
f bpξpsqqδpξpsq ´ xq dA. (8.52)

In immersed boundary methods (e.g. [131]), the force f b is called the force on the
body, and f f l the force on the fluid; the mapping between these two is performed
by a convolution with a Dirac function δpxq. Integrating f f lpxq over the domain Ω
leads to

ż

Ω
f f lpxq dΩ “

ż

S
f bpξpsqq dA “ F. (8.53)

So, the total force is the same in both formulations (as long as S is fully contained in
Ω). By basing our finite volume discretization on equation (8.46), no discrete Dirac
function will be required.

s

dAξpsq

f b

S

Ω

Γ

n

(a) Continuous

Ωi,j Ωi`1,j

panel l ∆Al

∆Al`1

h
i,j
l h

i`1,j
l

h
i´1,j
l

h
i`1,j
l`1

S

(b) Discrete

Figure 8.10: Surface force acting on an interface S in a fluid in a volume Ω.

8.3.2 Discrete

First we discretize an interface by representing it by N piecewise linear segments
(‘panels’). The integral (8.47) changes into a summation over these panels:

F “

N
ÿ

l“1

f b
l ∆Al , (8.54)

where ∆Al is the area of panel l and f b
l the surface stress acting on it.



8.3 incompressible navier-stokes, stationary forcing terms 171

With the interface discretized in panels, we apply equation (8.46) to a finite
volume. Exactly like in the continuous case, a volume Ωi,j gets a contribution from
f b

l if Ωi,j is intersected by the body S (see figure 8.10b). The force on finite volume
Ωi,j is simply given by

F i,j “

N
ÿ

l“1

f b
l hi,j

l , (8.55)

where hi,j
l is the area of panel l contained in volume Ωi,j.

Note again, that when employing the differential form of the Navier-Stokes equa-
tions (equation (8.51)), the force is introduced based on a discrete version of equa-
tion (8.52):

f f l
i,j “

N
ÿ

l“1

f b
l ∆Aldpξl ´ xi,jq, (8.56)

where dpxq is a discrete Dirac function; ξl is the midpoint of panel l and xi,j is
the midpoint of finite volume pi, jq. The Dirac function distributes the force from
the interface to the surrounding mesh. Different discrete Dirac functions have been
proposed in the literature, such as ‘hat’, ‘cosine’, or ‘Gaussian’ distributions, see e.g.
[17]. These discrete Dirac functions generally have a free parameter ε (typical values
of ε are in the range r∆x, 3∆xs), that determines the width of the Dirac distribution
and as such the amount of ‘smearing’ in transferring the force on the body to the
fluid. Our formulation (8.55) is free of such a parameter.

8.3.3 Handling discontinuities

Equation (8.55) is, like equation (8.5) for the one-dimensional case, exact (except for
the error introduced due to discretizing the interface in piecewise linear segments).
However, like in the one-dimensional case, the presence of discontinuities has to be
properly taken into account in the finite volume discretization of the other terms in
the incompressible Navier-Stokes equations.

We focus on the important case of a force f b
n normal to the interface. This nor-

mal force leads to a jump in the pressure as indicated by equation (8.49), so the
discretization of the pressure gradient term in equation (8.46) has to be adapted.
Consider an interface crossing a finite volume as illustrated in figure 8.11a. We use
a staggered grid, with the pressure points at the east and west faces of the finite
volume for the u-component. Without the presence of the interface (so without dis-
continuities) the pressure force acting on the left side of this volume would be given
by the second-order approximation

ż

p nx dy “ pi,j∆y. (8.57)



172 immersed interface methods

However, if the pressure is discontinuous on the face this approximation is not very
accurate. Like in the one-dimensional case (equation (A.44)), a more accurate ap-
proximation is obtained by including the pressure jump rps into the discretization:

ż

p nx dy “ pi,j∆y ` rps ∆g
loomoon

correction

, (8.58)

with ∆g defined in figures 8.11a-8.11c. As shown by equation (A.43) this is a first-
order accurate approximation. Based on the results from section 8.2, and results
from literature [96], it is expected that this is sufficient for global second-order
accuracy in the maximum norm.

pi,j pi`1,j

rps

∆g ui,j

S

(a) finite volume with interface

pi,j rps

∆g
∆y

(b) no correction

pi,j rps

∆g
∆y

(c) jump correction

Figure 8.11: Pressure gradient correction.

It is instructive to interpret the correction term in (8.58) as a correction to (the
x-component of) the force F i,j. The effective force is:

pF̃xqi,j “ pFxqi,j ` rps∆g. (8.59)

The sum of the correction terms over the entire domain is zero, so that the total
applied force remains unchanged.

8.3.4 Extension to fourth order

The discretization derived in sections 8.3.2-8.3.3 was based on a second order stag-
gered discretization. The extension to the fourth order method introduced in chapter
3 is as follows. Considering that this fourth order method is a combination of two
second order methods (on a fine and coarse finite volume), the total force in the
fourth order method should also be constructed as such:

F i,j “ α1pF1qi,j ´ pF3qi,j “

N
ÿ

l“1

f b
l pα1ph1q

i,j
l ´ ph3q

i,j
l q, (8.60)
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where ph1q
i,j
l and ph3q

i,j
l are the areas of panel l contained in volumes Ω1 and Ω3,

respectively. Figure 8.12 shows for the simple case of a vertical interface how pΩu
3 qi,j

and pΩu
3 qi`1,j get a force contribution from the interface passing through pΩu

1 qi,j.
Consequently, when plotting the force as function of x, it is not concentrated in a
single volume (as in the second order case), but distributed over three ‘effective’
volumes, see figure 8.13. This does not smear the solution, because the pressure
gradient operator also has a wider stencil than in the second order case. The dis-
continuity in the pressure is therefore also exact for the fourth order method, as can
be seen from figure 8.13b. Note that the pressure and force are defined at different
positions due to the staggering of the grid.

ui,j

pΩu
3 qi,j

(a) pΩu
3 qi,j

ui,j

pΩu
3 qi`1,j

(b) pΩu
3 qi`1,j

Figure 8.12: Coarse finite volumes obtaining a contribution from the force in ui,j. Red line
denotes the interface.
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Figure 8.13: Pressure and force behavior for one-dimensional test problem.
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8.3.5 Contribution to the energy equation

The immersed interface method is implemented in our energy-conserving spatial
discretization method. The body forces present in the momentum equation give a
contribution to the energy of the flow as shown by equation (2.26). For the case of
immersed interfaces with surface forces, this contribution becomes

p f f l , uq “

ż

Ω

ˆ
ż

S
f bpξpsqqδpξpsq ´ xq dA

˙

¨ upxq dΩ “

ż

S
f bpξpsqq ¨ upξpsqq dA.

(8.61)
The energy remains strictly decreasing if p f f l , uq ă 0. For actuator methods, such
as an actuator disk, f is generally in the opposite direction of the velocity, and
p f f l , uq ă 0 is valid. An upper bound for the energy is given by equation (2.27).
However, since actuators extract energy of the flow, this bound is not very sharp.

8.3.6 Results

8.3.6.1 An elliptical membrane with a pressure jump

We repeat example 2 from Li and Lai [98]: a fixed interface defined by the ellipse

´ x
a

¯2
`

´ y
b

¯2
“ 1, (8.62)

on which the normal ‘stress’ fn “ ´1 acts. The exact solution to this problem is

u “ v “ 0, (8.63)

p “

$

&

%

C ´ 1,
` x

a
˘2

`
` y

b
˘2

ą 1,

C,
` x

a
˘2

`
` y

b
˘2

ă 1,
(8.64)

where C is an arbitrary constant which we set at C “ 1. Like in [98] we take a “ 0.35
and b “ 0.25. The domain is r´1, 1s ˆ r´1, 1s. The pressure gradient correction terms
from equation (8.58) are shown in figure 8.14; they can be interpreted as additional
body forces. The solution for the pressure on a 40 ˆ 40 mesh is shown in figure 8.15.
In contrast to the method of [98] our discretization is exact for this problem. This is
independent of the number of finite volumes used, independent of the number of
points used to describe the ellipse (here we used 100), independent of the values of
a and b, and also holds on non-uniform grids. It can be explained by the fact that
approximation (8.58) is exact when the solution is piecewise constant. Without the
pressure gradient correction terms the solution is not exact and behaves oscillatory
near the interface.
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8.3.6.2 An actuator disk

As a second example we consider the flow through an actuator disk, a practically
relevant test for simulating the flow of air in wind turbine wakes.

First we perform an order of accuracy study of the immersed interface approach
for an actuator disk perpendicular to the flow, either uniformly or non-uniformly
loaded. In the uniformly loaded case we take fnprq “ ´ 1

4 , in the non-uniformly
loaded case we take [141]:

fnprq “ ´
3
2

rpr ´ Rq

R2 , (8.65)

where R “ 1
2 is the radius of the disk, and r the distance from the disk center. The

total loading is in both cases the same; the effective thrust coefficient is CT “ 1
2 .

Figure 8.18 shows a flow field example obtained with Re “ 100 and h “ 1{32. To
compute the error we compare the velocity profile in the wake (at x “ 1) with the
velocity profile computed on a fine mesh. The wake velocity profile is an important
quantity, for example in the study of wind turbine wake interactions. The error
behavior (in the maximum norm) as function of mesh size is shown in figure 8.16.
The rate of convergence is approaching 2 upon mesh refinement.

Secondly, we do a qualitative comparison of the immersed interface approach
with the discrete Dirac approach for an actuator disk at an angle of 30˝ with re-
spect to the flow. Figure 8.19 shows the velocity and pressure contours. The wake
behind the disk is deflected downward, since momentum is only extracted in a dir-
ection normal to the disk surface. The jump in pressure is again sharply captured.
In figure 8.17 the two approaches are compared. We used a Gaussian as discrete
Dirac function with ε “ 2∆x; this type of Dirac function and value of ε are typically
used in wind-turbine wake computations, see e.g. [111]. Figure 8.17 shows that the
immersed interface method is much more accurate than the discrete Dirac approach:
the results at h “ 1{4 with the IIM are better than the results with the Dirac ap-
proach at h “ 1{8. For this case we need a four times finer mesh when using Dirac
functions to obtain an accuracy comparable to the IIM.
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Figure 8.17: Comparison of IIM with discrete Dirac approach. Velocity profiles at x “ 1 for
actuator at an angle of 30˝.
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8.4 incompressible navier-stokes, moving forcing terms

8.4.1 Continuous

In the unsteady case, we proceed as in section 8.2.2 and integrate equation (8.46) in
both space and time:

„
ż

Ω
ρu dΩ

ȷt2

t1
“

ż tn`1

tn

ˆ
ż

Γ

´

´ρuu ` µp∇u ` p∇uqTq

¯

¨ n ´ p n dΓ
˙

dt `

ż tn`1

tn
Fptq dt.

(8.66)
Exchanging differentiation and integration in the unsteady term is, in contrast to the
one-dimensional case, valid, because no discontinuities in the velocity are present
(see equation (8.48)). Treating discontinuities will be further discussed in section
8.4.3. In this section we focus on the last term in (8.66). We consider a rigid interface
Sptq moving in time. In two dimensions such an interface traces out an area V in
time. This area is parameterized as ξps, tq, see figure 8.20a. The total impulse exerted
by the actuator on the flow is given by

I “

ż tn`1

tn
Fptq dt “

ż tn`1

tn

ż

S
f bpξps, tq, tq dA dt “

ż tn`1

tn

ż

S
f bpξps, tq, tq

ˇ

ˇ

ˇ

ˇ

Bξ

Bs

ˇ

ˇ

ˇ

ˇ

ds dt.

(8.67)
The integral in terms of the parametric representation ps, tq can be written in terms
of an integral in space. Noting that a differential element of size ds dt is related to
an element dV “ dx dy by

dx dy “

ˇ

ˇ

ˇ

ˇ

Bξ

Bs
ˆ

Bξ

Bt

ˇ

ˇ

ˇ

ˇ

ds dt, (8.68)

the integral is rewritten as

ż tn`1

tn

ż

S
f bpξps, tq, tq

ˇ

ˇ

ˇ

ˇ

Bξ

Bs

ˇ

ˇ

ˇ

ˇ

ds dt “

ĳ

V

f bpξps, tq, tq

ˇ

ˇ

ˇ

Bξ
Bs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Bξ
Bs ˆ

Bξ
Bt

ˇ

ˇ

ˇ

dV. (8.69)

Here Bξ
Bt “ wps, tq is the local velocity of the interface. In the cases that we consider,

wps, tq will be prescribed, but this is not necessary. At any time t the derivative Bξ
Bs is

tangential to the actuator contour, so it can be written as

Bξ

Bs
“

ˇ

ˇ

ˇ

ˇ

Bξ

Bs

ˇ

ˇ

ˇ

ˇ

τps, tq. (8.70)

Decomposing wps, tq in directions locally parallel and perpendicular to the actuator
contour gives

wps, tq “ wτps, tqτps, tq ` wnps, tqnps, tq, (8.71)
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so equation (8.67) becomes (τ ˆ τ “ 0, |τ ˆ n| “ 1):

I “

ĳ

V

f bpxq

|wnpxq|
dV. (8.72)

In this way the integral in time has been transformed into an integral in space; this
form will be employed in section 8.4.2 to derive a new discretization method. Equa-
tion (8.72) is also valid in three dimensions when V is interpreted as the volume
swept out by the immersed interface in time.

Note that for wn approaching zero (e.g. the steady case) this integral does not
tend to infinity, because the area of integration V tends to zero. This can be observed
directly from the original form

ş

Fdt which reduces to F∆t for a steady actuator.
In one dimension we also integrated the source term in time, see e.g. equation

(8.29). In that case the time integral can also be transformed according to (8.72).
However, there is no apparent advantage to do so since both time and space are
‘one-dimensional’.

t

s
ξps, tq

n

τ

S
V

(a) Continuous

Ωi,j

V

Vl`1

h
i,j
l “ Vl X Ωi,j

l ´ 1 l
l ` 1

tn

tn`1

wn w

S

(b) Discrete

Figure 8.20: An interface moving in time (in two dimensions).

8.4.2 Discrete

The discrete version of equation (8.72) reads

Ii,j “
ÿ

l

ĳ

VlXΩi,j

f lpxq

|wnpxq|
dV, (8.73)

where Vl is the volume swept out by panel l during a time step. In general, Vl X

Ωi,j “ H for most l. For example, figure 8.20b shows that Ωi,j is only intersected
by panels l ´ 1, l and l ` 1. Equation (8.73) is still exact since no discretization er-
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rors have been introduced (except in discretizing the interface in panels). However,
in general wn and f are varying in time and space, and Vl X Ωi,j has a complex
shape, so that the integral should be approximated numerically (this introduces a
discretization error in conservation of total impulse added to the flow).

If the force and the normal velocity are constant during a time step and uniform
over a panel, equation (8.73) becomes

Ii,j “
ÿ

l

f l
|wn|

ĳ

VlXΩi,j

dV “
ÿ

l

f l
|wn|

hi,j
l , (8.74)

where hi,j
l is the part of Ωi,j swept out by panel l, see figure 8.20b. In order to

determine hi,j
l we transform the volume integral into a surface integral with the

divergence theorem:

hi,j
l “

ĳ

VlXΩi,j

dV “

ĳ

VlXΩi,j

∇ ¨ x dV “

¿

BpVlXΩi,jq

x ¨ n dS. (8.75)

The intersection between Vl and Ωi,j is a polygon (if the interface is only translating,
and not rotating), and with (8.75) its area can be expressed by using the coordinates
of the vertices of the polygon. Assuming a rigid actuator, the boundaries of Vl are
found by tracking the begin and end points x1

l and x2
l of each panel:

dx1
l ptq

dt
“ w1

l ptq,
dx2

l ptq
dt

“ w2
l ptq, (8.76)

and w1
l ptq, w2

l ptq are assumed to be prescribed. (Note that x1
l ptq “ x2

l´1ptq.)
Discretization (8.73) has a number of attractive properties compared to a ‘naive’

discretization of equation (8.66). Such a naive discretization could read, for example:

ż tn`1

tn
Fptq dt “

1
2

∆t
´

Fptnq ` Fptn`1q

¯

. (8.77)

With this discretization only the finite volumes that are intersected by Fptnq and
Fptn`1q get a contribution. Our proposed discretization (8.73) tracks the movement
of the interface, and each intersected finite volume will obtain a force contribution.
We expect therefore that it is more suitable for large time steps.

8.4.3 Handling discontinuities

In section 8.2.3 we outlined how to treat moving discontinuities for the one-dimen-
sional heat equation by properly taking into account spatial and temporal jump
corrections. Here we propose a similar technique for the incompressible Navier-
Stokes equations. Note that the jump relations (8.48)-(8.49) still hold for moving
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discontinuities. We focus again on discontinuities in the pressure caused by forces
normal to an interface. In particular, we will discuss the discretization of

ż tn`1

tn

ż

Γ
p n dΓ dt, (8.78)

for the case that p has a discontinuity in space which is moving in time and possibly
changing its magnitude.

We consider the simplest case in which the interface is aligned with the y-axis
and translating in x-direction. The spatial integral in equation (8.78) becomes, for
volume Ωi,j:

ż tn`1

tn

ż

Γ
p n dΓ dt “ ∆y

ż tn`1

tn
ppi`1,jptq ´ pi,jptqq dt. (8.79)

When the interface passes through one of the faces of the finite volume, the pressure
on this face will jump in time. We assume this happens at t “ t1. The discretization
of the right face reads, like equation (8.36) for the one-dimensional heat equation,

ż tn`1

tn
pi`1,jptq dt “

1
2

∆tppn`1
i`1,j ` pn

i`1,jq `
1
2

vppt1qwpptn`1 ´ t1q ´ pt1 ´ tnqq, (8.80)

with the temporal jump given by vpw “ ´ sgnpwnqrps.

8.4.4 Results

8.4.4.1 A translating interface

In this section we consider a translating interface. We propose to evaluate the ac-
curacy of our method by comparing the solution of the translating interface to the
solution of a stationary interface in a moving reference frame, whose accuracy was
tested in section 8.3.6.2. Figure 8.21 provides a sketch of the two situations. The
domain is r´2, 2s ˆ r´2, 2s, and all boundary conditions are periodic.

In the moving reference frame, in which the interface is stationary, we compute
a reference solution. With the movement of the interface prescribed as xADptq “

sinptq, the position, velocity and acceleration of the moving reference frame are
given by

x1ptq “ xptq ´ sinptq, u1ptq “ uptq ´ cosptq, a1ptq “ aptq ` sinptq. (8.81)

The acceleration of the moving reference frame, sinptq, enters as a fictitious force
in the finite volume formulation. We employ a fourth-order explicit Runge-Kutta
method, see chapter 6, with a sufficiently small time step, so that temporal errors
are negligible.
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Figure 8.21: Interface (actuator disk) in stationary and moving reference frame.

In the stationary reference frame we compute a solution by tracking the movement
of the interface as described in sections 8.4.2-8.4.3. The total impulse exerted on the
flow during a time interval ∆t is given by

ż tn`1

tn

ż

f dy dt “

ż

V

f
|un|

dV “ ´ fx∆y∆tex. (8.82)

Time integration is performed with the Crank-Nicolson method. The pressure that
results from the Crank-Nicolson method is an average pressure over the time in-
terval, as discussed in chapter 5.3. To obtain a temporally accurate pressure, an
additional Poisson equation at the end of a time step should be solved (this can be
done as post-processing step). This Poisson equation contains the force at the new
time level (obtained using the method described in section 8.3, so not the time integ-
rated force given by equation (8.67). For comparison we also obtain a solution with
the discrete Dirac approach and Crank-Nicolson as time integration (see equation
(8.77)), using the same time step.

Plots of velocity and pressure at t “ 2π are shown in figures 8.22-8.23 (Re “ 500).
At this time instant vortices are forming at the upper and lower edge of the disk, as
can be seen from the low pressure areas. Like in the steady case, the immersed inter-
face method results in a much sharper representation of the pressure jump across
the interface, and consequently in a more accurate representation of the vortices
shed from the disk.
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8.4.4.2 A rotating interface

In this section we consider an immersed interface which is rotating instead of trans-
lating. This is, for example, a simplified model of a wind-turbine constantly yawing
in the wind, but can also be seen as a model of an insect moving its wings back
and forth [48]. This test contains some important ingredients necessary for rotating
wind-turbine blades in three dimensions.

We assume that the force on the interface is always normal to its surface, i.e., f “

fθeθ . The motion of a point on the disk is given by xptq “ r cos θptq, yptq “ r sin θptq,
where θptq is prescribed by a triangle wave with period 2 and amplitude π{4; the
normal velocity of a point on the disk is then given by |wnprq| “ Ωr, with Ω the
rotational frequency. The disk can be described by a single panel, so equation (8.73)
reads

Ii,j “

ĳ

VXΩi,j

f pxq

|wnpxq|
dV “

fθ

|Ω|

ĳ

1
x2 ` y2 p´yex ` xeyq dx dy, (8.83)

with V the volume traced out by the actuator during a time step. The intersection
of V with Ωi,j is approximated by an (arbitrarily accurate) polygon. The integrand
is expressed as the divergence of a vector field,

ĳ

1
x2 ` y2 p´yex ` xeyq dx dy “

ex

ĳ

∇ ¨

˜

0

´ 1
2 lnpx2 ` y2q

¸

dV ` ey

ĳ

∇ ¨

˜

1
2 lnpx2 ` y2q

0

¸

dV, (8.84)

which can subsequently be rewritten as a contour integral by employing the diver-
gence theorem, yielding:

Ii,j “
fθ

|Ω|

»

—

–

ex

¿

BpVXΩi,jq

´
1
2

lnpx2 ` y2q dx ` ey

¿

BpVXΩi,jq

1
2

lnpx2 ` y2q dy

fi

ffi

fl

. (8.85)

These terms can be evaluated by straightforward integration along the sides of a
polygon, which are of the form x ¨ n “ constant. The advantage of this approach is
that no approximation is introduced in evaluating the volume integrals. For more
general force distributions it might not be possible to compute the resulting integ-
rals exactly. In that case it is recommended to use a numerical integration technique,
such as Gaussian quadrature.

We use a domain of 8 ˆ 4 with smallest grid size 1{80 in the region of the actuator,
which is located at x “ 4, y “ 2. Away from the actuator the grid is mildly stretched
with a factor of 1.02. The total number of volumes is 336 ˆ 230. The Reynolds num-
ber is Re “ 100, the thrust coefficient CT “ 0.5 and the time step is ∆t “ 1{200.

A typical force distribution is shown in figure 8.24. The largest contribution is at
the center of the disk due to the 1{r dependency in equation (8.83). To check the nu-
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Figure 8.24: An example of the u-volumes traced out and the magnitude of Fx. The actual
mesh and time step are finer.

merical implementation of equation (8.85), the sum of the force on all finite volumes
is compared with the exact value obtained by integrating in polar coordinates:

Fx “

ĳ

´ sin θ

r
r dr dθ “ Dpcos θ2 ´ cos θ1q, (8.86)

where θ1 and θ2 are the initial and final angle that the actuator makes with the
x-axis, and D the diameter of the disk.

At t “ 2.5 the disk is at θ “ 3π{4 and the direction of motion flips. Contour plots
of velocity, pressure and vorticity are shown in figure 8.25. From the velocity con-
tours it is clearly seen that a wake is forming behind the disk, which has travelled
over a distance of approximately 2.5D since the start of the simulation at t “ 0.
Upon reversal of the direction of motion a vortex is shed from the lower side of the
disk as can be seen in figure 8.25c. The vortex previously shed from the upper side
is positioned approximately at (5.5,2.5) but has strongly reduced in strength due
to the relatively high viscosity of the flow. The pressure is, as in the previous test
cases, discontinuous across the disk.
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Figure 8.25: Flow field just after reaching maximum deflection (t “ 2.505).
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8.5 new actuator methods for wind-turbine wake simulations

Although the results presented so far are for relatively simple geometries and
simple force expressions, the proposed methods are valid for arbitrary shaped inter-
faces on which surface forces act. For wind-turbine wake computations a hierarchy
of actuator models can be constructed based on these ideas.

The most advanced and complete actuator model of a rotating wind-turbine blade
is obtained by prescribing shear stresses and pressure stresses along the entire
blade. We call this approach the ‘complete’ actuator surface method. This requires
detailed knowledge of the geometry and the force distribution, which is generally
not available. Several simplifications are possible based on reducing the complexity
of the geometry and of the forcing terms. A first (geometric) simplification is to col-
lapse the blade onto the chord or camber line, and prescribe the pressure difference
and sum of shear forces along this surface; this is the ‘thin’ actuator surface method.
A second (force) simplification is to prescribe average lift and drag forces along this
collapsed surface. We call this the actuator line method, since it uses the same forcing
(lift and drag) as the original actuator line method proposed in Sørensen and Shen
[176]. However, in their method the force is applied along a line (a point in 2D),
which leads to a singularity in the flow that has to be ‘repaired’ by smoothing with
discrete Dirac functions. We propose to keep the force associated with a surface (the
chord in 2D); this removes the singularity and gives consistent results upon mesh
refinement.

The different approaches are illustrated in figure 8.26 for a two-dimensional situ-
ation. The ‘reference’ flow field is obtained with an immersed boundary method
[113] and shown in figure 8.26a. In figure 8.26b the body is replaced by the distri-
bution of pressure and shear forces along the surface, which have been obtained
from Xfoil [44]. In figure 8.26c theses forces are projected onto the airfoil chord,
and in figure 8.26d the lift and drag coefficients are prescribed along the chord. We
observe that with every simplification some detail of the flow field is lost. However,
the velocity profiles of the different methods in the wake are very similar. For the
far wake it is most important that the total imposed force is correct, and the details
of geometry and force distribution have a smaller influence. This makes these ap-
proaches suitable for wind turbine wake simulations, where the detailed flow near
the blade is less important.

Note that a further simplification of the actuator line can be obtained by time
averaging. The actuator line sweeps out a circle in time: this is the actuator disk
method (possibly with both normal and tangential loading).

An important feature of our immersed interface method in finite volume setting
is that the above suggested reductions in complexity of geometry or forcing terms
follow automatically in a discrete sense when taking large time steps or coarse
meshes. For example, the actuator surface model reduces to the actuator line model
on a coarse mesh, and the actuator line model reduces to the actuator disk model
when time steps corresponding to a full rotor revolution are taken.
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Figure 8.26: Hierarchy of actuator models for the flow over an airfoil. Contour lines of velo-
city magnitude.
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8.6 conclusions

In this chapter we have proposed a new method for introducing actuator forces in
finite volume methods for the incompressible Navier-Stokes equations. Such actu-
ator forces lead to discontinuities in the flow field that should be treated carefully.
The background for our approach is the immersed interface method (IIM), a finite
difference method first proposed by LeVeque and Li [96]. We have extended the
IIM to a finite volume setting. The finite volume approach has the advantage that
less differentiability of the problem is required. For a one-dimensional test problem
we show how correction terms are derived. These correction terms involve both
spatial and temporal jumps, and are taken such that the local truncation error is
Op∆xq near the interface. This is sufficient for global second order accuracy in the
maximum norm.

The method has been applied to two-dimensional flows governed by the incom-
pressible Navier-Stokes equations. For stationary interfaces our method is the finite
volume equivalent of the continuous equations in integral form: a surface force acts
on the finite volumes which it intersects, and the contribution to the finite volume
depends on the area of intersection. The method sharply captures discontinuities
in pressure that arise from the imposition of forcing terms normal to the interface.
Compared to the conventional ‘Dirac’ approach, both velocity and pressure are
more accurate (less smeared out), and there is no need to choose a discrete Dirac
function and regularization parameter.

For moving interfaces, we have integrated the continuous equations in both space
and time. By rewriting the time-integrated force in terms of a volume integral, a
new discretization method is obtained: a finite volume gets a force contribution
depending on the intersectional area with the moving actuator. This opens up the
opportunity to take large time steps. However, as illustrated by one-dimensional
test cases, care should be taken to avoid unphysical oscillations arising from the
time integration method.

In order to apply the methods described in this chapter to the computation of
wind turbine wakes, a number of steps should be taken. Firstly, the method should
be implemented for more complicated geometries (turbine blades), and in three
dimensions. This requires an efficient method to trace the intersected finite volumes
during a time step; a possibility is to use a level-set representation of the interface
[98]. Secondly, the forcing terms should not be prescribed, but follow from the flow
field. For a rotating turbine blade, the forcing can be computed for example with the
blade element momentum (BEM) method based on the local angle of attack. Thirdly,
the current work has focused on the (most important) case of forcing normal to the
interface. However, tangential forces will introduce jumps in the derivative of the
velocity that have to be taken into account properly.
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In this chapter we show a number of simulation results that have been obtained
with the ECNS code as developed during this PhD project. Ingredients from all
parts of this thesis are combined: the staggered grid spatial discretization described
in part I, time integration with Runge-Kutta methods as described in part II, and
the representation of actuators as immersed interfaces as described in this part, part
III. The purpose of this chapter is not, in contrast to previous chapters, to develop
and verify numerical methods, but rather to show that our approach has resulted
in a code that is ready to be used for wind-turbine wake aerodynamics. As we
mentioned in section 1.5, there is a fourth ingredient - LES turbulence modeling -
necessary to complete the current work. Development, implementation and testing
of an LES model for wind-turbine wakes constitutes a PhD research in itself, and
is left as suggestion for future research. The simulations in this chapter therefore
consider laminar flow, which already reveal some important physical phenomena
occurring in wakes.

9.1 parallelization

In order to use the ECNS code for large-scale problems it had to be parallelized1.
The approach that has been taken is to write all discrete operators (convection,
diffusion, pressure gradient) as matrices. These matrices are saved in a sparse, par-
allel format. Evaluating convective or diffusive terms then amounts to matrix-vector
products. A clear advantage of this approach is that implicit time integration meth-
ods, such as described in section 7, can be implemented with relative ease. A draw-
back is that storing the discretization matrices can be memory intensive.

The framework that has been used for parallelization is PETSc (Portable Extens-
ible Toolkit for Scientific Computation), ‘a suite of data structures and routines for
the scalable (parallel) solution of scientific applications modeled by partial differen-
tial equations’ [11]. After building the discretization matrices using PETSc routines,
the user can perform matrix computations (such as matrix-vector and matrix-matrix
multiplications, dot products, etc.) without being concerned about the specifics of
the parallel implementation. A large set of matrix solvers is available in PETSc to
solve the resulting system of equations.

The results shown in this chapter have been obtained with the explicit Runge-
Kutta methods from chapter 6, so that a solution method for the Poisson equation is
necessary. Since the Laplace operator in the Poisson equation is symmetric positive
definite (on cartesian grids), a good candidate to solve the Poisson equation is the

1 This has been performed in cooperation with Margreet Nool (CWI, Amsterdam) and Steven van Haren
(NRG, Petten) under an NCF Research Grant, grant number NRG-2011.06.
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preconditioned conjugate gradient method. As preconditioner algebraic multigrid
was chosen (ML, see [57]). The same preconditioner can be used throughout the
time stepping process (the matrix for the Laplace operator is constant in time).

9.2 flow over a wing

As a first application of actuator methods in three dimensions we consider the flow
over a wing. The wing is modeled as an actuator surface that carries a uniformly
distributed load normal to its surface; the effective lift coefficient is CL “ 2. The
computational domain has size 6 ˆ 3 ˆ 3 and is discretized into 120 ˆ 60 ˆ 60 finite
volumes. The wing is positioned at x “ 1, has a span equal to 1 and a chord equal
to 0.2. A steady solution is obtained by marching in time. Figure 9.1 shows the
solution in terms of streamlines and contours of the vertical velocity component.
The upwash in front of the wing and downwash behind it are clearly visible. The
prescribed loading induces a pressure discontinuity in y-direction, as can be seen
from figure 9.2a. At the wing tips this pressure difference leads to the formation of
a tip vortex, and the roll-up of the wake. This is visualized in figure 9.2b.

Upon rotating this actuator surface in time (around the x-axis) using the method
described in section 8.4, and taking a non-uniformly distributed load over the sur-
face, a model for a rotating wind-turbine blade results.
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Figure 9.1: Flow over a wing, contours of v-velocity.
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Figure 9.2: Flow over a wing, contours of pressure.

9.3 flow through an actuator disk

We continue with the flow through a uniformly loaded actuator disk. The forcing
is now parallel (but in opposite direction) to the incoming flow, instead of perpen-
dicular to it (as in the previous section). The representation of the circular disk on a
cartesian mesh is done following section 8.3, leading to the force distribution shown
in figure 9.3. The disk is placed in the center of a domain of 6 ˆ 3 ˆ 3. We employ 20
finite volumes per rotor diameter (this is quite common, even in LES computations).
The resulting velocity field, shown in figure 9.4a, clearly reveals the expansion of
the wake. The high loading of the disk (CT “ 1) causes the velocity in the far wake
to approach zero. Due to the relatively high Reynolds number (Re “ 1000) the wake
interface stays quite sharp - in reality turbulent mixing will diffuse the interface and
will lead to recovery of the velocity field. The wake interface can also be visualized
by considering isosurfaces of the vorticity magnitude. Figure 9.4b shows how vor-
ticity is created at the edge of the disk and subsequently transported downstream.
The coloring by means of pressure values reveals the jump in pressure across the
disk.
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Figure 9.3: Uniformly loaded actuator disk. Force distribution based on intersectional area.
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(a) u-velocity contours and streamlines (b) iso-vorticity surface (}ω} “ 2.7) colored by pres-
sure contours

Figure 9.4: Flow through an actuator disk.

9.4 flow in a wind farm

We consider the flow in a wind farm array of 9 turbines, with spacing of 4 D and 3
D in streamwise and spanwise direction, respectively (the Lillgrund wind farm in
Sweden is an example of a wind farm with such a small spacing). The turbine rows
are at an angle of 30˝ with respect to the incoming flow. Instead of prescribing an
inflow velocity at this angle, we have changed the position of the turbines. This has
the advantage that the actuator disks are aligned with the mesh. The domain has
size 13 ˆ 3 ˆ 10. The same resolution as for the single wake computation is used,
leading to a total of 3.12 ¨ 106 finite volumes.

First we simulate, like in the previous example, wakes without presence of the
ground. All boundaries are of outflow (pressure) type, except the inflow boundary
at x “ 0. With these outflow conditions it is possible to place the computational
boundaries close to the turbines without any significant effect on the solution. The
thrust coefficient of the turbines is taken equal to CT “ 1

2 (in reality the thrust coef-
ficient of the turbines depends on the local velocity field, see 1.4.1.1). The Reynolds
number is Re “ 200, which (compared to the previous section) leads to a more
realistic recovery of the velocity field in the wake. Even though the flow is lam-
inar, there are important physical effects present in these computations. Figure 9.5
shows vorticity isosurfaces colored by the u-component of the velocity field. The
high vorticity areas close to the disks get diffused further downstream. In terms of
vorticity, the wakes of the downstream turbines are longer than the upstream ones;
the highest vorticity regions are encountered at the downstream turbines. Signific-
ant wake effects can be observed for these downstream turbines, where the velocity
drops to less than 50% of the freestream value. In contrast to what would happen in
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a two-dimensional simulation, there is hardly any ‘speed-up’ of the flow in between
the wakes, because the flow is able to expand in the third dimension.

Next we add the presence of the ground to the simulation. We prescribe a bound-
ary-layer type inflow profile of the form [22]

upyq “ y0.14, (9.1)

and no-slip boundary conditions at y “ 0. The thickness of the resulting bound-
ary layer is still growing as function of downstream position. The presence of the
ground leads to a loss of axi-symmetry in the wake velocity profiles, and to an
upward movement of the wakes (see figure 9.6). The wake deficits are clearly visu-
alized in figure 9.7.

Figure 9.5: Flow through a farm of 9 turbines. Vorticity isosurfaces colored by velocity field.
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Figure 9.6: As figure 9.5, but with presence of ground. Slices of velocity field.

Figure 9.7: Velocity vectors along x ´ y slice of figure 9.6.



10CONCLUSIONS AND RECOMMENDATIONS

As in all research we have had some real success, some partial success, some
partial failure and some real failure, and there is obviously still plenty to do.1

10.1 conclusions

As stated in chapter 1, the goal of this thesis was to develop accurate and effi-
cient numerical simulation methods for turbulent flows, and in particular for wind-
turbine wake aerodynamics. In the three parts of this thesis we have investigated
and proposed new numerical methods for the spatial and temporal discretization of
the incompressible Navier-Stokes equations, as well as for the representation of the
wind turbine model with actuator methods. The main conclusion is that: the use of
(i) finite volume methods on staggered cartesian grids, (ii) time discretization with
Runge-Kutta methods, and (iii) immersed interface methods to represent wind tur-
bines, constitute a very appropriate approach to perform wind-turbine wake sim-
ulations with LES as turbulence model. The reason for this is the combination of
stability, low artificial viscosity and high-order accuracy in space and time. Since these
properties are generally valuable for simulating turbulent flows governed by the
incompressible Navier-Stokes equations, we expect that the proposed discretization
methods are also widely applicable outside the wind energy community.
Below we will detail the conclusions for each of the parts of this thesis.

10.1.1 Spatial discretization

We have proposed the use of second and fourth order energy-conserving finite
volume methods on staggered cartesian grids to simulate wind-turbine wake aero-
dynamics. These methods are stable for any mesh, independent of viscosity, and do
not introduce artificial diffusion. For both the second and fourth order method an
analysis of the boundary contribution to the energy equation was performed, lead-
ing to new ‘energy-conserving’ boundary conditions. A theoretical one-dimensional
analysis showed that the global error of high-order methods is limited to second
order when requiring energy conservation. Therefore, near solid boundaries, non-
uniform grids should be applied in order for the fourth order scheme to be efficient.

1 L. Fox, Some Experiments with Singularities in Linear Elliptic Partial Differential Equations.
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10.1.2 Temporal discretization

For the temporal discretization we have considered Runge-Kutta methods. Runge-
Kutta methods have been widely applied to the spatially discretized incompressible
Navier-Stokes equations, but order of accuracy proofs that address both velocity
and pressure are missing. By viewing the spatially discretized Navier-Stokes equa-
tions as a system of differential-algebraic equations the order conditions for velocity
and pressure were derived. It turned out that for implicit methods (at least the ones
based on Gauss, Radau or Lobatto quadrature), the velocity attains its classical or-
der of accuracy, while for explicit methods this is true as long as the mesh is not
moving. The pressure is in general only first order accurate, unless an additional
Poisson equation is solved. We have proposed new methods that lead to a second
order pressure for a range of Runge-Kutta methods.

An important property of Runge-Kutta methods is that the coefficients can be
chosen such that the energy-conserving property of the spatial discretization is kept
when marching in time. The most prominent class of methods is based on Gauss
quadrature, which have the highest possible order of all Runge-Kutta methods. The
resulting second and fourth order energy-conserving discretizations (in space and
time) are stable for any mesh and any time step. In a practical computation this
resulted in the accurate simulation of the roll-up of a shear layer, and especially in
the accurate prediction of the enstrophy of the flow.

The energy-conserving property of Runge-Kutta methods comes at a price: lack of
L-stability. For stiff problems order reduction will occur. Energy-conserving Runge-
Kutta methods should therefore preferably be applied to the convective terms only,
and not to the diffusive terms (which can be stiff). As a remedy, an extension of
energy-conserving Runge-Kutta methods to additive Runge-Kutta methods was
proposed. In these additive methods the diffusive terms are integrated with an L-
stable method, and the convective terms with an energy-conserving method, both
based on the same quadrature points. Unfortunately, the resulting method has lost
the original unconditional (non-linear) stability properties, and due to low stage
order, it is still not competitive for stiff problems.

10.1.3 Actuator methods

The action of wind turbines on the flow is represented by using actuator methods.
These actuators can lead to discontinuities in the flow which should be handled
with care. In contrast to the commonly used discrete Dirac functions, we propose
to use immersed interface methods, which take into account the presence of dis-
continuities in the discretization method. We have extended the immersed interface
methodology to a finite volume setting, which is consistent with the presence of dis-
continuities. Simulation of the flow through actuator disks shows that the method
sharply captures pressure discontinuities and results in a velocity field that is less
diffusive than the discrete Dirac approach. For instationary interfaces a new discret-
ization method was derived based on the volume swept by the moving interface.
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10.2 recommendations

As mentioned in the introductory chapter, the state-of-the-art in wind-turbine wake
simulations is to use LES as turbulence model. The main extension of the current
work, and as such the most important recommendation, is to include an LES model
in the ECNS code. The code is then ready to perform simulations of turbulent flow.
The non-dissipative discretization methods developed in this thesis are suitable to
test and compare different LES models, since all diffusion will be coming from the
turbulence model, and not from the numerics (the contribution from the laminar
viscosity is often negligible in wind-turbine wakes). Such a comparison is very
valuable, also outside the wind energy community.

Other recommendations - or: areas for further research - are listed below, grouped
by each part of the thesis.

10.2.1 Spatial discretization

It was shown in this thesis that the order of accuracy of the energy-conserving
fourth order spatial discretization is limited to second order when boundaries are
involved. The starting point in this analysis was the definition of the energy, ob-
tained by the choice for an inner product. It is possible to generalize the analysis by
choosing a ‘weighted’ or ‘adapted’ inner product, e.g.

pu, vqA “

ż

Ω
u ¨ pA ¨ vq dΩ, (10.1)

where A is a symmetric positive definite rank-2 tensor. Deriving both the continu-
ous and discrete energy equation for this inner product shows that the requirements
on the convective and diffusive matrices are relaxed with respect to the standard
inner product: instead of (skew-) symmetry, a condition on the eigenvalues of the
matrices results (purely imaginary for convection, negative and real for diffusion).
This constitutes a broader class of matrices, opening the room for higher-order
boundary discretizations. See for example [184] for a weighted inner product ap-
proach to hyperbolic partial differential equations.

This thesis has furthermore focused on (uniform and non-uniform) cartesian
grids. For many (unsteady) turbulent flows, such as in wind-turbine wakes, it might
be efficient to consider local grid refinement, for example to accurately track tip vor-
tices. Combining local grid refinement with energy conservation and possibly high
order constitutes a formidable challenge; some work in this direction is described
in [69].

The order of accuracy of the pressure in case of boundary conditions was not
reported in this thesis. Hou and Wetton [72] proved second order convergence for
a case of no-slip boundary conditions in one direction and periodic boundary con-
ditions in the other direction. It appears, however, that second order is not obtained
in domains with no-slip boundary conditions on all sides (i.e. domains involving
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corners). We found that the reason for this lies in the local truncation error of the
diffusive terms, which is inconsistent at the boundary of a staggered grid. A fix
can be found by changing the discretization of the diffusive term near the bound-
ary, which restores the second order accuracy of the pressure. Further research is
needed to investigate if this can be applied to the fourth order scheme as well.

10.2.2 Temporal discretization

Like for the spatial discretization, it is possible to define the kinetic energy in time
in different ways. In this thesis the energy was defined ‘pointwise’ in time. An
alternative definition could be based on the average kinetic energy during a time
interval. This could lead to other interesting ‘energy’-conserving time integration
schemes.

The implicit Gauss Runge-Kutta methods proposed for energy-conserving time
integration of the incompressible Navier-Stokes equations are relatively expensive
(the cost per time step is high). Research into efficient solution of non-linear saddle-
point systems is indispensable. Then, the performance of these methods should be
evaluated for a variety of test cases, including turbulent flows. We expect that the
Gauss methods are most effective for problems that are sensitive to the amount of
numerical diffusion, such as problems involving transition.

The order conditions and stability properties of Runge-Kutta methods treated
in this thesis were investigated by using existing theory on index-2 differential-
algebraic equations. These theoretical results provide a very general and thorough
framework to study time discretizations for the spatially discretized incompressible
Navier-Stokes equations. It is recommended to continue further research on time
integration methods along this line. This offers insight in order conditions and sta-
bility for situations such as moving meshes, implicit-explicit (IMEX) Runge-Kutta
methods, (symmetric) projection methods, multi-step methods, etc. Some pointers
to literature are [63, 61, 79].

The additive Runge-Kutta methods proposed in this work - aimed at being energy-
conserving in the inviscid limit, and L-stable in the stiff limit - integrate the convect-
ive terms with a different Runge-Kutta method than the diffusive terms. Another
idea, not tested in this thesis, is to integrate convection-dominated regions with an
energy-conserving Runge-Kutta method, and diffusion-dominated regions with an
L-stable method.

Another issue with Runge-Kutta methods are ‘space-time errors’, which can res-
ult from unsteady boundary conditions (as mentioned in section 6.2.6). This is an
important case for wind-turbine wake simulations, where the inflow is generally
unsteady. An order of accuracy study with simultaneous mesh and time step re-
finement is necessary to investigate if this is an issue.
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10.2.3 Actuator methods

The immersed interface approach developed in this paper has been successfully
applied to actuators with prescribed loading and prescribed motion. The most im-
portant extension will be to make the loading depending on the local velocity field,
as is required when modeling wind turbine blades. The forcing then becomes an
unknown (as function of the velocity) which has to be taken into account in the
solution of the (non-linear) system of equations at each time step. Furthermore, an
efficient method to determine intersections between a (moving) actuator and the
mesh is required, possibly by using level-set methods.





ADETAILS OF SPATIAL DISCRETIZATION

a.1 boundary stencil for the poisson equation

In the interior the u-momentum equation reads:

9ui,j “ Nu
i,j ´ pΩu

i,jq
´1pGu pqi,j, (A.1)

where Nu includes the convective and diffusive terms of the u-component, divided
by the effective finite volume size (see equation (3.13)). The time derivative of the
divergence equation reads

α1p 9ui,j ´ 9ui´1,jq ´ α2p 9ui`1,j ´ 9ui´2,jq ` (v-component) “ 0. (A.2)

Inserting (A.1) gives the Laplace operator for a uniform grid:

1
∆x

ˆ

1
8

pi´3,j ´
27
4

pi´2,j `
783
8

pi´1,j ´
365
2

pi,j `
783
8

pi`1,j ´
27
4

pi`2,j `
1
8

pi`3,j

˙

“

α1pNu
i,j ´ Nu

i´1,jq ´ α2pNu
i`1,j ´ Nu

i´2,jq ` (v-component). (A.3)

Near a boundary the stencil of the Laplace operator is found in a similar way.
Taking the time derivative of the divergence-free constraint near the boundary (the
first row of equation (4.6)) gives

pα1 ´ α2q 9u1,j ´ α2 9u2,j ` p´α1 ` 2α2q 9ub,j “ 0, (A.4)

where we have ignored the v-component. Substituting the momentum equations
for 9u1,j and 9u2,j gives

1
∆x

ˆ

´
677

8
p1j `

729
8

p2,j ´
53
8

p3,j `
1
8

p4,j

˙

“

pα1 ´ α2qNu
1,j ´ α2Nu

2,j ` p´α1 ` 2α2q 9ub,j. (A.5)

The effective (‘implied’) boundary condition for the pressure follows by subtracting
equation (A.3) (for i “ 1) from the last equation:

1
∆x

ˆ

1
8

pp3,j ´ p´2,jq ´
27
4

pp2,j ´ p´1,jq `
783
8

pp1,j ´ p0,jq

˙

“

α1Nu
b,j ´ α2pNu

´1,j ` Nu
1,jq ` p´α1 ` 2α2q 9ub,j. (A.6)
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Repeating this procedure for i “ 2 gives the following stencil for the Poisson oper-
ator:

1
∆x

ˆ

729
8

p1,j ´
1459

8
p2,j `

783
8

p3,j ´
27
4

p4,j `
1
8

p5,j

˙

“

α1pNu
2,j ´ Nu

1,jq ´ α2Nu
3,j ` α2 9ub,j, (A.7)

so the effective boundary condition is

1
∆x

ˆ

1
8

pp2,j ´ p´1,jq ´
27
4

pp1,j ´ p0,jq

˙

“ ´α2Nu
b,j ` α2 9ub,j. (A.8)

Similarly, for i “ 3, the stencil of the Poisson operator is

1
∆x

ˆ

´
53
8

p1,j `
783
8

p2,j ´
365
2

p3,j `
783
8

p4,j ´
27
4

p5,j `
1
8

p6,j

˙

“

α1pNu
3,j ´ Nu

2,jq ´ α2pNu
4,j ´ Nu

1,jq, (A.9)

and the effective boundary condition is

1
∆x

1
8

pp1,j ´ p0,jq “ 0. (A.10)
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a.2.2 Diffusive terms

The contribution of the diffusive terms to the energy equation reads

uTDuu “

ub,j

«

α1

˜

ˆ

Bu
Bx

˙

1{2,j
´

ˆ

Bu
Bx

˙

b,j

¸

´

¨

˝

˜

Bu
Bx

¸

´1{2,j

`

˜

Bu
Bx

¸

1{2,j

`

˜

Bu
Bx

¸

3{2,j

´ 3

˜

Bu
Bx

¸

b,j

˛

‚

fi

fl `

u1,j

»

–α1

˜

ˆ

Bu
Bx

˙

3{2,j
´

ˆ

Bu
Bx

˙

1{2,j

¸

´

¨

˝

˜

Bu
Bx

¸

5{2,j

´

˜

Bu
Bx

¸

´1{2,j

˛

‚

fi

fl `

u2,j

»

–α1

˜

ˆ

Bu
Bx

˙

5{2,j
´

ˆ

Bu
Bx

˙

3{2,j

¸

´

¨

˝

˜

Bu
Bx

¸

7{2,j

´

˜

Bu
Bx

¸

1{2,j

˛

‚

fi

fl ` . . .

(A.30)

Regrouping gives

uTDuu “ ´

ˆ

Bu
Bx

˙

b,j
pα1 ´ 9qub,j `

ˆ

Bu
Bx

˙

´1{2,j
3pu1,j ´ ub,jq

´

ˆ

Bu
Bx

˙

1{2,j
pα1pu1,j ´ ub,jq ´ 3pu2,j ´ ub,jqq

´

ˆ

Bu
Bx

˙

3{2,j
pα1pu2,j ´ u1,jq ´ 3pu3,j ´ ub,jqq ` . . .

(A.31)

The first term is recognized as the discrete counterpart of the boundary integral in
(4.39). The last term is handled like the interior terms. Since the first order derivat-
ives are discretized as

ˆ

Bu
Bx

˙

i`1{2,j
“

∆y
72∆x

`

α1
`

ui`1,j ´ ui,j
˘

´ 3
`

ui`2,j ´ ui´1,j
˘˘

, (A.32)

it can be written as

´

ˆ

Bu
Bx

˙

3{2,j
pα1pu2,j ´ u1,jq ´ 3pu3,j ´ ub,jq “

´ 72∆x∆y
ˆ

9
8

u2,j ´ u1,j

∆x
´

1
8

u3,j ´ ub,j

3∆x

˙2
. (A.33)

This is the discrete equivalent of
ş

´

Bu
Bx

¯2
dx, centered around pi ` 3{2, jq. The second

and third term in (A.31) should provide a similar approximation to a volume
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centered around pi ` 1{2, jq. Evaluating (A.32) for i “ 0 and i “ ´1 and ‘stand-
ard’ boundary conditions

u´2,j “ 2ub,j ´ u2,j, (A.34)

u´1,j “ 2ub,j ´ u1,j, (A.35)

gives

ˆ

Bu
Bx

˙

1{2,j
“

∆y
72∆x

´

α1

´

u1,j ´ ub,j

¯

´ 3
´

u2,j ` u1,j ´ 2ub,j

¯¯

, (A.36)

ˆ

Bu
Bx

˙

´1{2,j
“

ˆ

Bu
Bx

˙

1{2,j
. (A.37)

Adding the second and third term in (A.31) gives

ˆ

Bu
Bx

˙

´1{2,j
3pu1,j ´ ub,jq ´

ˆ

Bu
Bx

˙

1{2,j
pα1pu1,j ´ ub,jq ´ 3pu2,j ´ ub,jqq

“ ´

ˆ

Bu
Bx

˙

1{2,j
pα1pu1,j ´ ub,jq ´ 3pu2,j ` u1,j ´ 2ub,jqq

“ ´72∆x∆y
ˆ

9
8

u1,j ´ ub,j

∆x
´

1
8

u2,j ` u1,j ´ 2ub,j

3∆x

˙2

.

(A.38)

Taking all steps together, equation (A.30) can be written as

uT Duu “ ´

ˆ

Bu
Bx

˙

b,j
pα1 ´ 9qub,j ` . . .

´ 72∆x∆y

«

ˆ

9
8

u1,j ´ ub,j

∆x
´

1
8

u2,j ` u1,j ´ 2ub,j

3∆x

˙2

`

ˆ

9
8

u2,j ´ u1,j

∆x
´

1
8

u3,j ´ ub,j

3∆x

˙2
` . . .

ff

. (A.39)

This is the discrete equivalent of the right hand side of (4.39).
For the v-component a similar analysis can be carried out.
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a.3 generalized taylor expansions

We follow [213] for the generalized Taylor expansion of a function with discontinu-
ities. Assume a function upxq on the domain x P rx0, x1s has a discontinuity at α.
Then upxq can be Taylor expanded around x0 as

upxq “

8
ÿ

n“0

upnqpx0q

n!
px ´ x0qn ` Hpx ´ αq

8
ÿ

n“0

rupnqpαqs

n!
px ´ αqn, (A.40)

where Hpxq is the Heaviside function. We will focus on the first 3 terms in this
infinite sum.

a.3.1 Approximating integrals

We express the integral of upxq over a finite volume rx1, x2s in terms of the midpoint
value upx0q (x0 “ 1

2 px1 ` x2q) and its derivatives and in terms of rupαqs and its
derivatives (assuming α ą x0):
ż x2

x1

upxq dx “

ż x2

x1

ˆ

upx0q ` uxpx0qpx ´ x0q `
1
2

uxxpx0qpx ´ x0q2 ` Oppx ´ x0q3q

˙

dx `

ż x2

α

ˆ

rupαqs ` ruxpαqspx ´ αq `
1
2

ruxxpαqspx ´ αq2 ` Oppx ´ αq3q

˙

dx

(A.41)

“ upx0q∆x `
1
24

uxxpx0q∆x3 ` rupαqs∆α `
1
2

ruxpαqs∆α2`

1
6

ruxxpαqs∆α3 ` Op∆x5q, (A.42)

where ∆α “ x2 ´ α. The integral can therefore be approximated to second order
accuracy by taking the midpoint approximation

ż x2

x1

upxq dx “ upx0q∆x ` rupαqs∆α `
1
2

ruxpαqs∆α2 ` Op∆x3q. (A.43)

In practice, it is allowed to ‘loose’ one order of accuracy at the volumes near the
interface (see e.g. [96]), so that for second-order accuracy it is sufficient to use the
following adapted midpoint rule:

ż x2

x1

upxq dx « upx0q∆x ` rupαqs∆α. (A.44)

Equations (A.43) and (A.44) also hold for the case α ă x0 if we define ∆α as

∆α “ sgnpα ´ x0q minpα ´ x1, x2 ´ αq. (A.45)
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An alternative approximation to the integral can be constructed by employing the
trapezoidal rule. Expanding upx1q and upx2q in terms of upx0q we get

1
2

∆xpupx1q ` upx2qq “ upx0q∆x `
1
8

uxxpx0q∆x3`

1
2

rupαqs∆x `
1
2

ruxpαqs∆xpx2 ´ αq ` Op∆x5q. (A.46)

By comparison with the exact integral (A.42), the adapted trapezoidal rule can be
derived to read

ż x2

x1

upxq dx «
1
2

∆xpupx1q ` upx2qq`

1
2

rupαqsppx2 ´ αq ´ pα ´ x1qq ´
1
2

ruxpαqspx2 ´ αqpα ´ x1q. (A.47)

a.3.2 Approximating derivatives

In order to find an expression for ux at a finite volume face xj`1{2, we expand upxjq

and upxj`1q in terms of upxj`1{2q. We assume that the discontinuity at x “ α lies
right of xj`1{2 (α ą xj`1{2), see figure 8.1. Following (A.40) this results into

upxjq “ upxj`1{2q ´ uxpxj`1{2q

ˆ

1
2

∆x
˙

`
1
2

uxxpxj`1{2q

ˆ

1
2

∆x
˙2

` Op∆x3q, (A.48)

upxj`1q “ upxj`1{2q ` uxpxj`1{2q

ˆ

1
2

∆x
˙

`
1
2

uxxpxj`1{2q

ˆ

1
2

∆x
˙2

`

rupαqs ` ruxpαqspxj`1 ´ αq `
1
2

ruxxpαqspxj`1 ´ αq2 ` Op∆x3q. (A.49)

A second order approximation to uxpxj`1{2q then follows by taking

upxj`1q ´ rupαqs ´ ruxpαqspxj`1 ´ αq ´ 1
2 ruxxpαqspxj`1 ´ αq2 ´ upxjq

∆x
“

uxpxj`1{2q ` Op∆x2q. (A.50)

Again, since a local truncation error of Op∆xq is sufficient for the volumes near the
interface, we take in practice

upxj`1q ´ rupαqs ´ ruxpαqspxj`1 ´ αq ´ upxjq

∆x
“ uxpxj`1{2q ` Op∆xq. (A.51)

In case α ă xj`1{2 one should change xj`1 to xj in the last equation.
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b.1 w-transformation

Hairer and Wanner introduced the W-transformation in the study of the construc-
tion of high-order implicit Runge-Kutta methods [63]. The s ˆ s matrix W is a Van-
dermonde matrix defined by

wij “ P̃j´1pciq, i “ 1, . . . , s, j “ 1, . . . , s, (B.1)

where P̃kpxq are the normalized shifted Legendre polynomials defined by

P̃kpxq “
?

2k ` 1
k

ÿ

j“0

p´1qj`k
ˆ

k
j

˙ˆ

j ` k
j

˙

xj, k “ 0, 1, . . . . (B.2)

Application of W on the coefficient matrix A (the W-transformation) leads to a
matrix, X˚, with a special structure:

X˚ “ W´1 AW. (B.3)

This matrix can be related to the simplifying conditions Cpηq and Dpζq and is there-
fore linked to the order of the method ([63], Theorem 5.11). The matrix X, defined
by

X “ WTBAW “ JX˚, where J “ WTBW, (B.4)

is closely resembling X˚ and can be used to characterize symmetry, symplecticity
and stability properties. In case the quadrature formula is of order ě 2s ´ 1, then
J “ I and X “ X˚. The special structure of matrix X is especially evident for the
Gauss methods, for which it is denoted by XG:

XG “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1{2 ´ξ1

ξ1 0 ´ξ2

ξ2
. . . . . .
. . . 0 ´ξs´1

ξs´1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (B.5)
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where ξk “ 1
2
?

4k2´1
. The conditions for symplecticity, algebraic stability and sym-

metry in terms of the X matrix read [33, 63]:

X ` XT ´ e1eT
1 “ 0 symplectic, (B.6)

X ` XT ´ e1eT
1 ě 0 algebraically stable, (B.7)

Xkl “ 0 for k ` l ‰ 2 is even, P̂c “ e ´ c, P̂b “ b symmetric, (B.8)

where P̂ is the permutation matrix with elements p̂ij “ δi,s`1´j, e “ p1, . . . , 1qT and
e1 “ p1, 0, . . . , 0qT .

b.2 energy-conserving (s)dirk methods

We are interested in algebraically stable energy-conserving (S)DIRK methods, i.e.,
having E “ 0 and b ě 0. Energy-conserving DIRK methods can be derived by
employing the W-transform of the previous section, but for ‘low’ order methods
(say lower than 4) it is somewhat easier to take the following approach. Evaluating
the symplecticity condition

biaij ` bjaji ´ bibj “ 0, (B.9)

for DIRK methods (aij “ 0 for j ą i) leads to a Butcher tableau with the following
structure:

b1{2 b1{2

b1 ` b2{2 b1 b2{2

b1 ` b2 ` b3{2 b1 b2 b3{2
...

...
...

...
. . .

b1 ` . . . ` bs´1 ` bs{2 b1 b2 b3 . . . bs{2

b1 b2 b3 . . . bs

(B.10)

A particular family which satisfies this form is given by bi “ 1{s (j ă i), but it is
limited to second order (it is simply repeated application of the midpoint method).
All high-order energy-conserving DIRK methods obtained in literature, e.g. [38, 135,
187, 53], have negative b-coefficients and are therefore not algebraically stable - they
are only useful for pure convective-type problems, where all eigenvalues lie on the
imaginary axis. This is confirmed by Chan et al. [34], who showed by using theory
on order stars that all algebraically stable energy-conserving DIRK methods are limited to
second order, independent of s. This negative result also holds for the weaker concept
of A-stability. For energy-conserving DIRK methods the stability function reads (see
equation (7.22))

Rpzq “

śs
i“1 1 ` 1

2 biz
śs

i“1 1 ´ 1
2 biz

, (B.11)
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and its poles are given by z “ 2{bi. A-stability requires that all poles of the stability
function Rpzq lie in the positive half plane C` [63]. The condition bi ě 0 is therefore
not only necessary for algebraic stability, but also for A-stability, when energy-
conserving DIRK methods are considered.

b.3 stability of additive runge-kutta methods

b.3.1 Algebraic stability

Consider equation (7.29), repeated here for convenience:

}un`1}2 “ }un}2 ` 2∆t
s

ÿ

i“1

bi
`

pUi, PFiq ` pUi, PF̂iq
˘

´ ∆t2

¨

˝

s
ÿ

i,j“1

eijpPFi, PFjq `

s
ÿ

i,j“1

êijpPF̂i, PF̂jq ` 2
s

ÿ

i,j“1

ẽijpPFi, PF̂jq

˛

‚. (B.12)

The second term on the right-hand side of this equation, 2∆tp. . .q, is zero for pure
convection problems and negative if diffusion is present, as long as bi ě 0. The sign
of the third term, ´∆t2p. . .q, depends on the matrices E, Ê and Ẽ. The entire term
can be written as

´ ∆t2
2s
ÿ

i,j“1

ēijpxi, xjq, (B.13)

by defining x “ pPF1, . . . , PFs, PF̂1, . . . , PF̂sq
T , and

Ē “

˜

E Ẽ

Ẽ Ê

¸

. (B.14)

Unconditional algebraic stability requires that Ē is nonnegative definite (nonneg-
ative definiteness of the individual blocks is not sufficient, see [56]). We now en-
counter the following negative result.

Theorem B.3.1. (Algebraic stability of additive Runge-Kutta methods) Consider an ad-
ditive Runge-Kutta method (7.23)-(7.24) with b “ b̂ and the Butcher tableau Â for the
convective terms such that Ê “ 0. Then the method cannot be algebraically stable, except if
it is trivial (i.e. A “ Â).

Proof. For algebraic stability Ē should be nonnegative definite. Given that Ê “ 0
this leads to the requirement Ẽ “ 0. However, Ê “ BÂ ` ÂTB ´ bbT “ 0 leads to
Ẽ “ BÂ ` ATB ´ bbT “ BpÂ ´ Aq, which is zero only in case Â “ A.
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In [56] it is shown (for general additive Runge-Kutta methods) how the term

2∆t
s

ÿ

i“1

bi
`

pUi, PFiq ` pUi, PF̂iq
˘

(B.15)

can be used to obtain conditional algebraic stability, by requiring a more strict con-
dition than pFi, Uiq ď 0, namely

pFi, Uiq ď µi}Fi}
2, µi ă 0. (B.16)

Such a condition permits one to add diagonal matrices to the diagonal blocks of Ē,
and with a condition on ∆t this can lead to a nonnegative definite Ē. In our case,
(B.16) cannot hold for the convective terms because pCpUi, Uiq, Uiq “ 0, and con-
sequently the zero block in Ē caused by Ê will remain zero. Conditional algebraic
stability can therefore not be proven either.

b.3.2 Linear stability

Consider the expression for the amplification factor for an additive Runge-Kutta
method, equation (7.32):

Rpz, ẑq ”
un`1

un
“

Det
`

I ´ zA ´ ẑÂ ` pz ` ẑqebT˘

Det
`

I ´ zA ´ ẑÂ
˘ “

Npz, ẑq

Dpz, ẑq
, (B.17)

Both Npz, ẑq and Dpz, ẑq can be expressed as polynomials of the form:

Npz, ẑq “

s
ÿ

i“0

¨

˝

s´i
ÿ

j“0

nij ẑj

˛

‚zi, Dpz, ẑq “

s
ÿ

i“0

¨

˝

s´i
ÿ

j“0

dij ẑj

˛

‚zi, (B.18)

where the coefficients nij and dij associated with the highest order terms are

n0s “ p´1qsDetpQ̂q, ns0 “ p´1qsDetpQq, (B.19)

d0s “ p´1qsDetpÂq, ds0 “ p´1qsDetpAq. (B.20)

If the original method A is L-stable (i.e., it has DetpQq “ 0 and DetpAq ‰ 0), then
these expressions show that the resulting additive method is still L-stable, i.e., we
have for fixed ẑ:

lim
zÑ´8

Rpz, ẑq “ 0, (B.21)

provided that the additive method is A-stable. Unfortunately, as in the case of algeb-
raic stability, A-stability of the additive method does not follow from the A-stability
of the two separate methods due to the coupling terms in Npz, ẑq and Dpz, ẑq.
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b.4 partial runge-kutta methods

Consider an ODE of the form

9uptq “ f puptq, tq. (B.22)

A Runge-Kutta method applied to this ODE reads:

Ui “ un ` ∆t
s

ÿ

j“1

aij f pUj, tjq, (B.23)

un`1 “ un ` ∆t
s

ÿ

i“1

bi f pUi, tiq. (B.24)

See section 5.3 for notation. The summations can be seen as approximations to the
following integrals:

∆t
s

ÿ

j“1

aij f pUj, tjq «

ż ti

tn
f puptq, tq dt, (B.25)

∆t
s

ÿ

i“1

bi f pUi, tiq «

ż tn`1

tn
f puptq, tq dt. (B.26)

We consider the case where f can be split as f puptq, tq “ hpuptq, tq ` gptq, and
gptq can be integrated exactly in time. We then adapt formulation (B.23)-(B.24) as
follows:

Ûi “ un `

ż ti

tn
gptq dt ` ∆t

s
ÿ

j“1

aijhpÛj, tjq, (B.27)

ûn`1 “ un `

ż tn`1

tn
gptq dt ` ∆t

s
ÿ

i“1

bihpÛi, tiq. (B.28)

We call this a partial Runge-Kutta method. Since this is formally not a Runge-Kutta
method, it is questionable if the classical order conditions are still valid. Intuitively
one might expect that the partial RK method is more accurate than the standard
RK method, since part of f puptq, tq is integrated exactly. This can be investigated as
follows. The Taylor expansion of the exact solution is given by

upt ` ∆tq “ uptq ` ∆t 9uptq `
1
2

∆t2 :uptq ` Op∆t3q, (B.29)

where 9uptq “ f and :uptq “ 9f ` f 1 f (we leave out the arguments puptq, tq for nota-
tional convenience). A 1 denotes differentiation with respect to u. The Taylor ex-
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pansion of the numerical solution is as follows. First write the partial Runge-Kutta
method as

ẑp∆tq “ uptq ` Gpt ` ∆tq ´ Gptq ` ∆t
s

ÿ

i“1

bi Hi, (B.30)

where Gptq is the primitive of gptq and

Hi “ hpÛi, tiq, (B.31)

Ûi “ uptq ` Gpt ` ci∆tq ´ Gptq ` ∆t
s

ÿ

j“1

aij Hj. (B.32)

ẑ, Hi and Ûi are functions of ∆t, with uptq fixed. The Taylor expansion of the nu-
merical solution is given by

ẑp∆tq “ ẑp0q ` ∆tẑ1p0q `
1
2

∆t2ẑ2p0q ` Op∆t3q, (B.33)

where 1 indicates here differentiation with respect to ∆t. To find the first terms of
(B.33) we proceed as follows. From (B.30) we have ẑp0q “ uptq. Differentiating (B.30)
with respect to ∆t gives

ẑ1p∆tq “
ÿ

i

bi Hi ` ∆t
ÿ

i

bi H1
i ` g ` ∆t 9g `

1
2

∆t2 :g ` Op∆t3q, (B.34)

so

ẑ1p0q “
ÿ

i

bi Hip∆t “ 0q ` g “

˜

ÿ

i

bi

¸

h ` g. (B.35)

Note that for a ‘standard’ Runge-Kutta method, equations (B.23)-(B.24), the g term
would be inside the summation, i.e., one would have

z1p0q “

˜

ÿ

i

bi

¸

ph ` gq “

˜

ÿ

i

bi

¸

f . (B.36)

In case the first order (consistency) condition
ř

i bi “ 1 is satisfied, ẑ1p0q “ z1p0q “ f ,
and both the partial and the standard Runge-Kutta method are first order accurate
(by comparing with (B.29)). The local truncation error is given by

τ̂ “ ∆t

˜

f ´

˜

ÿ

i

bi

¸

h ´ g

¸

` Op∆t2q “ ∆t

˜

1 ´
ÿ

i

bi

¸

p f ´ gq ` Op∆t2q. (B.37)

Further differentiation gives

ẑ2p∆tq “ 2
ÿ

i

bi H1
i ` ∆t

ÿ

i

bi H2
i ` 9g ` ∆t:g ` Op∆t2q, (B.38)
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where

H1
i “

BHi

BÛi

BÛi
B∆t

`
BHi
Bti

Bti
B∆t

(B.39)

“
BHi

BÛi

¨

˝cig `
1
2

c2
i ∆t 9g ` . . . `

ÿ

j

aij Hj ` ∆t
ÿ

j

aij H1
j

˛

‚`
BHi
Bti

ci. (B.40)

Letting ∆t Ñ 0, we obtain

ẑ2p0q “ 2
ÿ

i

bi

¨

˝h1

¨

˝cig `
ÿ

j

aijh

˛

‚` ci
9h

˛

‚` 9g, (B.41)

“ 2

¨

˝

ÿ

i

ÿ

j

biaij

˛

‚

´

h1h ` 9h ` h1g
¯

` 9g. (B.42)

Like in equation (B.35), the partial Runge-Kutta method has 9gptq ‘outside’ the sum-
mation whereas in the standard Runge-Kutta method it is inside the summation:

z2p0q “

¨

˝2
ÿ

i

ÿ

j

biaij

˛

‚

´

9f ` f 1 f
¯

. (B.43)

Note that 9f ` f 1 f “ h1h ` 9h ` h1g ` 9g. Again, if the second-order condition
ř

i
ř

j biaij“
ř

i bici “ 1
2 is satisfied, ẑ2p0q “ z2p0q “ 9f ` f 1 f , and both formulations are second

order. This process can be repeated (also for systems of equations, instead of scalar
equations), showing that each equation for ẑpnqp0q contains the pn ´ 1qth derivative
of g, which is not preceded by the coefficients of the Runge-Kutta method: the or-
der of accuracy of a partial Runge-Kutta method (B.27)-(B.28) is the same as the order of
accuracy of the original Runge-Kutta method (B.23)-(B.24).

However, the methods are not equivalent, since the local truncation errors are
different. Imagine a first order method (like Forward Euler) that does not satisfy
the second order condition

ř

i bici “ 1
2 . The local truncation error is given by

τ̂ “
1
2

∆t2

˜

9f ` f 1 f ´ 2

˜

ÿ

i

bici

¸

´

h1h ` 9h ` h1g
¯

´ 9g

¸

` Op∆t3q,

“
1
2

∆t2

˜

1 ´ 2
ÿ

i

bici

¸

p:u ´ 9gq ` Op∆t3q. (B.44)

The effect of the partial Runge-Kutta method is to change the local truncation error;
whether it increases or decreases is problem specific (it depends on 9gptq). In the
special case f puptq, tq “ gptq, then 9u “ g, :u “ 9g, etc.; the solution is exact and the
local truncation error vanishes.
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SUMMARY

Energy-conserving discretization methods for the incompressible Navier-Stokes
equations. Application to the simulation of wind-turbine wakes.

In this thesis numerical methods are developed for the simulation of turbulent
flows governed by the incompressible Navier-Stokes equations. This is inspired by
the need for accurate and efficient computations of the flow of air in wind-turbine
wakes. The state-of-the-art in computing such flows is to use Large Eddy Simula-
tion (LES) as a turbulence model. In LES the Navier-Stokes equations are filtered
such that only the large, energy-containing scales of motion are simulated - the
smaller scales are modeled. However, even with such a model, LES simulations
remain expensive (not only in wind energy applications) and are typically ‘under-
resolved’: the mesh is too coarse to resolve all important scales. Thus, an ongoing
challenge is to construct numerical methods that are stable and accurate even on
coarse meshes, and do not introduce false (‘artificial’) diffusion that can destroy the
delicate features of turbulent flows.

The approach taken is to construct high-order energy-conserving discretization
methods. Such methods mimic an important property of the continuous incom-
pressible Navier-Stokes equations, namely the conservation of kinetic energy in the
limit of vanishing viscosity. The energy equation is, for incompressible flows, de-
rived from the equations for conservation of mass and momentum. An energy-
conserving discretization method is nonlinearly stable, independent of mesh, time
step, or viscosity, and does not introduce artificial diffusion.

The first part of this thesis addresses spatially energy-conserving discretization
methods, in particular second and fourth order finite volume methods on staggered
cartesian grids. Special attention is paid to the proper treatment of boundary con-
ditions for high order methods. New boundary conditions are derived such that
the boundary contributions to the discrete energy equation mimic the boundary
contributions of the continuous equations. An important theoretical result is ob-
tained: higher order energy-conserving finite volume discretizations are limited to
second order global accuracy in the presence of boundaries. On properly chosen
non-uniform grids, designed such that the maximum error is not at the boundary,
fourth order accuracy can be recovered.

The second part of this thesis addresses time integration of the incompressible
Navier-Stokes equations with Runge-Kutta methods. Runge-Kutta methods are of-
ten applied to the spatially discretized incompressible Navier-Stokes equations,
but order of accuracy proofs that address both velocity and pressure are miss-
ing. By viewing the spatially discretized Navier-Stokes equations as a system of
differential-algebraic equations the order conditions for velocity and pressure are
derived. Based on these conditions new explicit Runge-Kutta methods are derived,
that have high-order accuracy for both velocity and pressure. These explicit meth-
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ods are not strictly energy-conserving but can be efficient, depending when the
time step is determined by accuracy instead of stability. However, for truly energy-
conserving Runge-Kutta methods implicit methods need to be considered. High-
order Runge-Kutta methods based on Gauss quadrature are proposed. In particu-
lar, the two-stage fourth order Gauss method is investigated and combined with the
fourth order spatial discretization, resulting in a fourth order energy-conserving method
in space and time, which is stable for any mesh and any time step. A disadvantage of
the Gauss methods is that they are less suitable for integrating the diffusive terms,
since they lack L-stability. Therefore, new additive Runge-Kutta methods are invest-
igated: the diffusive terms are integrated with an L-stable Runge-Kutta method, and
the convective terms with an energy-conserving Runge-Kutta method, both based
on the same quadrature points. Unfortunately, their low stage order does not make
them more efficient than the original Gauss methods. In practice, the second or-
der Gauss method (implicit midpoint) is therefore the preferred time integration
method.

The third part of this thesis addresses actuator methods. Actuator methods are
simplified models to represent the effect of a body (such as a wind turbine) on a flow
field, without requiring the actual geometry of the body to be taken into account.
Actuator forces introduce discontinuities in flow variables and should therefore be
treated carefully. A new immersed interface method in finite volume formulation
is proposed, which leads to a sharp, non-diffusive, representation of the actuator.
This does not require the choice for a discrete Dirac function and regularization
parameter.

The ideas put forth in this thesis have been implemented in a new parallel
3D incompressible Navier-Stokes solver: ECNS (Energy-Conserving Navier-Stokes
solver). The resulting method combines stability, no numerical viscosity and high-
order accuracy. This makes it a valuable tool for simulating turbulent flow problems
governed by the incompressible Navier-Stokes equations and suitable for the devel-
opment and comparison of LES models. For the particular case of wind-turbine
wake aerodynamics a number of simulations have been performed: flow over a
wing as a model for a wind turbine blade, and flow through an array of actuator
disks representing a wind farm.



SAMENVATTING

Energiebehoudende discretisatiemethoden voor de incompressibele Navier-Stokes
vergelijkingen, toegepast op de simulatie van windturbinezoggen.

In dit proefschrift worden numerieke methoden ontwikkeld voor de simulatie
van turbulente stromingen, beschreven door de incompressibele Navier-Stokes ver-
gelijkingen. Zulke methoden kunnen bijvoorbeeld gebruikt worden om de stroming
van lucht in windturbineparken uit te rekenen. De ‘state-of-the-art’ voor het bere-
kenen van zulke turbulente stromingen is het gebruik van ‘Large Eddy Simulation’
(LES) als turbulentiemodel. In de LES aanpak worden de Navier-Stokes vergelijkin-
gen gefilterd, zodat alleen de grote, energiebehoudende schalen worden gesimu-
leerd - de kleinere schalen worden gemodelleerd. Echter, zelfs met een LES model
blijven simulaties duur in termen van rekentijd. Veel LES simulaties worden daarom
uitgevoerd met een rooster dat te grof is om alle belangrijke schalen op te lossen.
Een uitdaging is om numerieke methoden te construeren die stabiel en nauwkeurig
zijn op zulke grove roosters, en geen kunstmatige diffusie introduceren. Kunstma-
tige diffusie kan de delicate eigenschappen van turbulente stromingen verstoren.

De aanpak in dit proefschrift is het construeren van hogere-orde energiebehoudende
discretisatiemethoden. Dergelijke methoden bezitten discreet een belangrijke eigen-
schap van de continue incompressibele Navier-Stokes vergelijkingen: behoud van
kinetische energie in het niet-visceuze geval. Een energiebehoudende discretisatie
heeft belangrijke eigenschappen: simulaties zijn stabiel, onafhankelijk van gekozen
rooster, tijdstap of viscositeit, en er wordt geen kunstmatige diffusie geïntroduceerd.

Het eerste deel van dit proefschrift behandelt ruimtelijke energiebehoudende dis-
cretisatiemethoden, in het bijzonder tweede- en vierde-orde nauwkeurige eindige-
volume methoden op ‘staggered’ cartesische roosters. Nieuwe randvoorwaarden
voor hogere-orde methoden worden afgeleid, die zodanig zijn dat de bijdragen van
de rand aan de discrete energievergelijking de bijdragen van de continue energie-
vergelijking nabootsen. Een belangrijk theoretisch resultaat is dat hogere-orde ener-
giebehoudende eindige-volume discretisaties beperkt zijn tot tweede-orde nauw-
keurigheid door de aanwezigheid van randen. Als een niet-uniform rooster echter
zo wordt gekozen dat de maximale fout niet bij de rand ligt, is het mogelijk om
toch vierde-orde nauwkeurigheid te behouden.

Het tweede deel van dit proefschrift behandelt de tijdsintegratie van de incom-
pressibele Navier-Stokes vergelijkingen met Runge-Kutta methoden. Runge-Kutta
methoden worden vaak gebruikt voor tijdsintegratie van de ruimtelijk gediscreti-
seerde incompressibele Navier-Stokes vergelijkingen. De ordecondities voor zowel
de snelheid als de druk worden afgeleid door de ruimtelijke gediscretiseerde verge-
lijkingen te zien als een stelsel van differentiaal-algebraïsche vergelijkingen. Nieuwe
expliciete Runge-Kutta methoden worden voorgesteld die hogere-orde nauwkeu-
righeid hebben voor zowel snelheid als druk. Zulke expliciete methoden zijn niet
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energiebehoudend, maar kunnen efficiënt zijn als de tijdstap bepaald wordt door
nauwkeurigheid in plaats van stabiliteit. Om werkelijk energiebehoudende Runge-
Kutta methoden te construeren moeten impliciete methoden worden beschouwd:
methoden gebaseerd op Gauss kwadratuur. De twee-staps vierde-orde Gauss me-
thode is onderzocht en gecombineerd met de vierde-orde ruimtelijke discretisatie,
wat resulteert in een vierde-orde energiebehoudende methode in ruimte en tijd. De Gauss
methoden zijn echter minder geschikt voor tijdsintegratie van de diffusieve termen
door het ontbreken van L-stabiliteit. Als alternatief zijn daarom nieuwe additieve
Runge-Kutta methoden voorgesteld: de diffusieve termen worden hierbij geïnte-
greerd met een L-stabiele methode, en de convectieve termen met een energiebe-
houdende methode, gebaseerd op dezelfde kwadratuurpunten. Helaas zorgt hun
lage ‘stage orde’ ervoor dat deze methoden niet meer efficiënt zijn dan de origi-
nele Gauss methoden. In praktijk is de tweede-orde Gauss methode daarom de te
verkiezen tijdsintegratiemethode.

Het derde deel van dit proefschrift behandelt actuator methoden. Actuator me-
thoden representeren het effect van een lichaam (zoals een windturbineblad) op de
stroming door middel van voorgeschreven krachten, zonder dat de daadwerkelijke
geometrie hoeft te worden gemodelleerd. Het eenvoudigste windturbinemodel is
gegeven door een trekkende schijf (‘actuator disk’). De voorgeschreven krachten lei-
den tot discontinuïteiten in de stromingsvariabelen en moeten daarom zorgvuldig
behandeld worden. Een nieuwe ‘immersed interface’ methode in eindige-volume
formulering is voorgesteld, die leidt tot een scherpe, niet-diffusieve representatie
van de interface. In tegenstelling tot bestaande methoden is hierbij geen discrete
Dirac functie of regularisatieparameter vereist.

De ideeën voorgesteld in dit proefschrift zijn geïmplementeerd in een nieuwe pa-
rallelle 3D incompressibele Navier-Stokes code: ECNS (Energy-Conserving Navier-
Stokes solver). Deze code combineert stabiliteit, vrijwaring van numerieke diffusie,
en hogere-orde nauwkeurigheid in ruimte en tijd. De code is een waardevol ge-
reedschap voor het simuleren van turbulente stromingsproblemen beschreven door
de incompressibele Navier-Stokes vergelijkingen, en is in het bijzonder geschikt
voor het ontwikkelen en vergelijken van LES modellen. Een aantal simulaties re-
levant voor windturbinezoggen zijn uitgevoerd: de stroming over een vleugel als
een model voor een windturbineblad, en de stroming door een park met turbines
gemodelleerd als trekkende schijven.
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